From: Michael Orlitzky Date: Tue, 20 Sep 2011 17:24:40 +0000 (-0400) Subject: Fix a bunch of name conflicts by renaming 'c' to 'cube' everywhere. X-Git-Tag: 0.0.1~127 X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=a06c2cdbc189c6b16add4ca06856f0727c12a617;p=spline3.git Fix a bunch of name conflicts by renaming 'c' to 'cube' everywhere. --- diff --git a/src/Cube.hs b/src/Cube.hs index d3f5151..8f22266 100644 --- a/src/Cube.hs +++ b/src/Cube.hs @@ -63,97 +63,92 @@ instance Arbitrary Cube where instance Show Cube where - show c = + show cube = "Cube_" ++ subscript ++ "\n" ++ - " h: " ++ (show (h c)) ++ "\n" ++ - " Center: " ++ (show (center c)) ++ "\n" ++ - " xmin: " ++ (show (xmin c)) ++ "\n" ++ - " xmax: " ++ (show (xmax c)) ++ "\n" ++ - " ymin: " ++ (show (ymin c)) ++ "\n" ++ - " ymax: " ++ (show (ymax c)) ++ "\n" ++ - " zmin: " ++ (show (zmin c)) ++ "\n" ++ - " zmax: " ++ (show (zmax c)) ++ "\n" ++ - " fv: " ++ (show (Cube.fv c)) ++ "\n" + " h: " ++ (show (h cube)) ++ "\n" ++ + " Center: " ++ (show (center cube)) ++ "\n" ++ + " xmin: " ++ (show (xmin cube)) ++ "\n" ++ + " xmax: " ++ (show (xmax cube)) ++ "\n" ++ + " ymin: " ++ (show (ymin cube)) ++ "\n" ++ + " ymax: " ++ (show (ymax cube)) ++ "\n" ++ + " zmin: " ++ (show (zmin cube)) ++ "\n" ++ + " zmax: " ++ (show (zmax cube)) ++ "\n" ++ + " fv: " ++ (show (Cube.fv cube)) ++ "\n" where subscript = - (show (i c)) ++ "," ++ (show (j c)) ++ "," ++ (show (k c)) - - --- | Returns an empty 'Cube'. -empty_cube :: Cube -empty_cube = Cube 0 0 0 0 empty_values 0 + (show (i cube)) ++ "," ++ (show (j cube)) ++ "," ++ (show (k cube)) -- | The left-side boundary of the cube. See Sorokina and Zeilfelder, -- p. 76. xmin :: Cube -> Double -xmin c = (2*i' - 1)*delta / 2 +xmin cube = (2*i' - 1)*delta / 2 where - i' = fromIntegral (i c) :: Double - delta = h c + i' = fromIntegral (i cube) :: Double + delta = h cube -- | The right-side boundary of the cube. See Sorokina and Zeilfelder, -- p. 76. xmax :: Cube -> Double -xmax c = (2*i' + 1)*delta / 2 +xmax cube = (2*i' + 1)*delta / 2 where - i' = fromIntegral (i c) :: Double - delta = h c + i' = fromIntegral (i cube) :: Double + delta = h cube -- | The front boundary of the cube. See Sorokina and Zeilfelder, -- p. 76. ymin :: Cube -> Double -ymin c = (2*j' - 1)*delta / 2 +ymin cube = (2*j' - 1)*delta / 2 where - j' = fromIntegral (j c) :: Double - delta = h c + j' = fromIntegral (j cube) :: Double + delta = h cube -- | The back boundary of the cube. See Sorokina and Zeilfelder, -- p. 76. ymax :: Cube -> Double -ymax c = (2*j' + 1)*delta / 2 +ymax cube = (2*j' + 1)*delta / 2 where - j' = fromIntegral (j c) :: Double - delta = h c + j' = fromIntegral (j cube) :: Double + delta = h cube -- | The bottom boundary of the cube. See Sorokina and Zeilfelder, -- p. 76. zmin :: Cube -> Double -zmin c = (2*k' - 1)*delta / 2 +zmin cube = (2*k' - 1)*delta / 2 where - k' = fromIntegral (k c) :: Double - delta = h c + k' = fromIntegral (k cube) :: Double + delta = h cube -- | The top boundary of the cube. See Sorokina and Zeilfelder, -- p. 76. zmax :: Cube -> Double -zmax c = (2*k' + 1)*delta / 2 +zmax cube = (2*k' + 1)*delta / 2 where - k' = fromIntegral (k c) :: Double - delta = h c + k' = fromIntegral (k cube) :: Double + delta = h cube instance ThreeDimensional Cube where -- | The center of Cube_ijk coincides with v_ijk at -- (ih, jh, kh). See Sorokina and Zeilfelder, p. 76. - center c = (x, y, z) + center cube = (x, y, z) where - delta = h c - i' = fromIntegral (i c) :: Double - j' = fromIntegral (j c) :: Double - k' = fromIntegral (k c) :: Double + delta = h cube + i' = fromIntegral (i cube) :: Double + j' = fromIntegral (j cube) :: Double + k' = fromIntegral (k cube) :: Double x = delta * i' y = delta * j' z = delta * k' -- | It's easy to tell if a point is within a cube; just make sure -- that it falls on the proper side of each of the cube's faces. - contains_point c (x, y, z) - | x < (xmin c) = False - | x > (xmax c) = False - | y < (ymin c) = False - | y > (ymax c) = False - | z < (zmin c) = False - | z > (zmax c) = False + contains_point cube (x, y, z) + | x < (xmin cube) = False + | x > (xmax cube) = False + | y < (ymin cube) = False + | y > (ymax cube) = False + | z < (zmin cube) = False + | z > (zmax cube) = False | otherwise = True @@ -162,329 +157,329 @@ instance ThreeDimensional Cube where -- | The top (in the direction of z) face of the cube. top_face :: Cube -> Face.Face -top_face c = Face.Face v0' v1' v2' v3' +top_face cube = Face.Face v0' v1' v2' v3' where - delta = (1/2)*(h c) - v0' = (center c) + (delta, -delta, delta) - v1' = (center c) + (delta, delta, delta) - v2' = (center c) + (-delta, delta, delta) - v3' = (center c) + (-delta, -delta, delta) + delta = (1/2)*(h cube) + v0' = (center cube) + (delta, -delta, delta) + v1' = (center cube) + (delta, delta, delta) + v2' = (center cube) + (-delta, delta, delta) + v3' = (center cube) + (-delta, -delta, delta) -- | The back (in the direction of x) face of the cube. back_face :: Cube -> Face.Face -back_face c = Face.Face v0' v1' v2' v3' +back_face cube = Face.Face v0' v1' v2' v3' where - delta = (1/2)*(h c) - v0' = (center c) + (delta, -delta, -delta) - v1' = (center c) + (delta, delta, -delta) - v2' = (center c) + (delta, delta, delta) - v3' = (center c) + (delta, -delta, delta) + delta = (1/2)*(h cube) + v0' = (center cube) + (delta, -delta, -delta) + v1' = (center cube) + (delta, delta, -delta) + v2' = (center cube) + (delta, delta, delta) + v3' = (center cube) + (delta, -delta, delta) -- The bottom face (in the direction of -z) of the cube. down_face :: Cube -> Face.Face -down_face c = Face.Face v0' v1' v2' v3' +down_face cube = Face.Face v0' v1' v2' v3' where - delta = (1/2)*(h c) - v0' = (center c) + (-delta, -delta, -delta) - v1' = (center c) + (-delta, delta, -delta) - v2' = (center c) + (delta, delta, -delta) - v3' = (center c) + (delta, -delta, -delta) + delta = (1/2)*(h cube) + v0' = (center cube) + (-delta, -delta, -delta) + v1' = (center cube) + (-delta, delta, -delta) + v2' = (center cube) + (delta, delta, -delta) + v3' = (center cube) + (delta, -delta, -delta) -- | The front (in the direction of -x) face of the cube. front_face :: Cube -> Face.Face -front_face c = Face.Face v0' v1' v2' v3' +front_face cube = Face.Face v0' v1' v2' v3' where - delta = (1/2)*(h c) - v0' = (center c) + (-delta, -delta, delta) - v1' = (center c) + (-delta, delta, delta) - v2' = (center c) + (-delta, delta, -delta) - v3' = (center c) + (-delta, -delta, -delta) + delta = (1/2)*(h cube) + v0' = (center cube) + (-delta, -delta, delta) + v1' = (center cube) + (-delta, delta, delta) + v2' = (center cube) + (-delta, delta, -delta) + v3' = (center cube) + (-delta, -delta, -delta) -- | The left (in the direction of -y) face of the cube. left_face :: Cube -> Face.Face -left_face c = Face.Face v0' v1' v2' v3' +left_face cube = Face.Face v0' v1' v2' v3' where - delta = (1/2)*(h c) - v0' = (center c) + (delta, -delta, delta) - v1' = (center c) + (-delta, -delta, delta) - v2' = (center c) + (-delta, -delta, -delta) - v3' = (center c) + (delta, -delta, -delta) + delta = (1/2)*(h cube) + v0' = (center cube) + (delta, -delta, delta) + v1' = (center cube) + (-delta, -delta, delta) + v2' = (center cube) + (-delta, -delta, -delta) + v3' = (center cube) + (delta, -delta, -delta) -- | The right (in the direction of y) face of the cube. right_face :: Cube -> Face.Face -right_face c = Face.Face v0' v1' v2' v3' +right_face cube = Face.Face v0' v1' v2' v3' where - delta = (1/2)*(h c) - v0' = (center c) + (-delta, delta, delta) - v1' = (center c) + (delta, delta, delta) - v2' = (center c) + (delta, delta, -delta) - v3' = (center c) + (-delta, delta, -delta) + delta = (1/2)*(h cube) + v0' = (center cube) + (-delta, delta, delta) + v1' = (center cube) + (delta, delta, delta) + v2' = (center cube) + (delta, delta, -delta) + v3' = (center cube) + (-delta, delta, -delta) tetrahedron :: Cube -> Int -> Tetrahedron -tetrahedron c 0 = - Tetrahedron (fv c) v0' v1' v2' v3' vol +tetrahedron cube 0 = + Tetrahedron (fv cube) v0' v1' v2' v3' vol where - v0' = center c - v1' = center (front_face c) - v2' = Face.v0 (front_face c) - v3' = Face.v1 (front_face c) - vol = tetrahedra_volume c + v0' = center cube + v1' = center (front_face cube) + v2' = Face.v0 (front_face cube) + v3' = Face.v1 (front_face cube) + vol = tetrahedra_volume cube -tetrahedron c 1 = +tetrahedron cube 1 = Tetrahedron fv' v0' v1' v2' v3' vol where - v0' = center c - v1' = center (front_face c) - v2' = Face.v1 (front_face c) - v3' = Face.v2 (front_face c) - fv' = rotate ccwx (fv c) - vol = tetrahedra_volume c - -tetrahedron c 2 = + v0' = center cube + v1' = center (front_face cube) + v2' = Face.v1 (front_face cube) + v3' = Face.v2 (front_face cube) + fv' = rotate ccwx (fv cube) + vol = tetrahedra_volume cube + +tetrahedron cube 2 = Tetrahedron fv' v0' v1' v2' v3' vol where - v0' = center c - v1' = center (front_face c) - v2' = Face.v2 (front_face c) - v3' = Face.v3 (front_face c) - fv' = rotate ccwx $ rotate ccwx $ fv c - vol = tetrahedra_volume c - -tetrahedron c 3 = + v0' = center cube + v1' = center (front_face cube) + v2' = Face.v2 (front_face cube) + v3' = Face.v3 (front_face cube) + fv' = rotate ccwx $ rotate ccwx $ fv cube + vol = tetrahedra_volume cube + +tetrahedron cube 3 = Tetrahedron fv' v0' v1' v2' v3' vol where - v0' = center c - v1' = center (front_face c) - v2' = Face.v3 (front_face c) - v3' = Face.v0 (front_face c) - fv' = rotate cwx (fv c) - vol = tetrahedra_volume c - -tetrahedron c 4 = + v0' = center cube + v1' = center (front_face cube) + v2' = Face.v3 (front_face cube) + v3' = Face.v0 (front_face cube) + fv' = rotate cwx (fv cube) + vol = tetrahedra_volume cube + +tetrahedron cube 4 = Tetrahedron fv' v0' v1' v2' v3' vol where - v0' = center c - v1' = center (top_face c) - v2' = Face.v0 (top_face c) - v3' = Face.v1 (top_face c) - fv' = rotate cwy (fv c) - vol = tetrahedra_volume c - -tetrahedron c 5 = + v0' = center cube + v1' = center (top_face cube) + v2' = Face.v0 (top_face cube) + v3' = Face.v1 (top_face cube) + fv' = rotate cwy (fv cube) + vol = tetrahedra_volume cube + +tetrahedron cube 5 = Tetrahedron fv' v0' v1' v2' v3' vol where - v0' = center c - v1' = center (top_face c) - v2' = Face.v1 (top_face c) - v3' = Face.v2 (top_face c) - fv' = rotate cwy $ rotate cwz $ fv c - vol = tetrahedra_volume c - -tetrahedron c 6 = + v0' = center cube + v1' = center (top_face cube) + v2' = Face.v1 (top_face cube) + v3' = Face.v2 (top_face cube) + fv' = rotate cwy $ rotate cwz $ fv cube + vol = tetrahedra_volume cube + +tetrahedron cube 6 = Tetrahedron fv' v0' v1' v2' v3' vol where - v0' = center c - v1' = center (top_face c) - v2' = Face.v2 (top_face c) - v3' = Face.v3 (top_face c) + v0' = center cube + v1' = center (top_face cube) + v2' = Face.v2 (top_face cube) + v3' = Face.v3 (top_face cube) fv' = rotate cwy $ rotate cwz $ rotate cwz - $ fv c - vol = tetrahedra_volume c + $ fv cube + vol = tetrahedra_volume cube -tetrahedron c 7 = +tetrahedron cube 7 = Tetrahedron fv' v0' v1' v2' v3' vol where - v0' = center c - v1' = center (top_face c) - v2' = Face.v3 (top_face c) - v3' = Face.v0 (top_face c) - fv' = rotate cwy $ rotate ccwz $ fv c - vol = tetrahedra_volume c - -tetrahedron c 8 = + v0' = center cube + v1' = center (top_face cube) + v2' = Face.v3 (top_face cube) + v3' = Face.v0 (top_face cube) + fv' = rotate cwy $ rotate ccwz $ fv cube + vol = tetrahedra_volume cube + +tetrahedron cube 8 = Tetrahedron fv' v0' v1' v2' v3' vol where - v0' = center c - v1' = center (back_face c) - v2' = Face.v0 (back_face c) - v3' = Face.v1 (back_face c) - fv' = rotate cwy $ rotate cwy $ fv c - vol = tetrahedra_volume c - -tetrahedron c 9 = + v0' = center cube + v1' = center (back_face cube) + v2' = Face.v0 (back_face cube) + v3' = Face.v1 (back_face cube) + fv' = rotate cwy $ rotate cwy $ fv cube + vol = tetrahedra_volume cube + +tetrahedron cube 9 = Tetrahedron fv' v0' v1' v2' v3' vol where - v0' = center c - v1' = center (back_face c) - v2' = Face.v1 (back_face c) - v3' = Face.v2 (back_face c) + v0' = center cube + v1' = center (back_face cube) + v2' = Face.v1 (back_face cube) + v3' = Face.v2 (back_face cube) fv' = rotate cwy $ rotate cwy $ rotate cwx - $ fv c - vol = tetrahedra_volume c + $ fv cube + vol = tetrahedra_volume cube -tetrahedron c 10 = +tetrahedron cube 10 = Tetrahedron fv' v0' v1' v2' v3' vol where - v0' = center c - v1' = center (back_face c) - v2' = Face.v2 (back_face c) - v3' = Face.v3 (back_face c) + v0' = center cube + v1' = center (back_face cube) + v2' = Face.v2 (back_face cube) + v3' = Face.v3 (back_face cube) fv' = rotate cwy $ rotate cwy $ rotate cwx $ rotate cwx - $ fv c + $ fv cube - vol = tetrahedra_volume c + vol = tetrahedra_volume cube -tetrahedron c 11 = +tetrahedron cube 11 = Tetrahedron fv' v0' v1' v2' v3' vol where - v0' = center c - v1' = center (back_face c) - v2' = Face.v3 (back_face c) - v3' = Face.v0 (back_face c) + v0' = center cube + v1' = center (back_face cube) + v2' = Face.v3 (back_face cube) + v3' = Face.v0 (back_face cube) fv' = rotate cwy $ rotate cwy $ rotate ccwx - $ fv c - vol = tetrahedra_volume c + $ fv cube + vol = tetrahedra_volume cube -tetrahedron c 12 = +tetrahedron cube 12 = Tetrahedron fv' v0' v1' v2' v3' vol where - v0' = center c - v1' = center (down_face c) - v2' = Face.v0 (down_face c) - v3' = Face.v1 (down_face c) - fv' = rotate ccwy $ fv c - vol = tetrahedra_volume c - -tetrahedron c 13 = + v0' = center cube + v1' = center (down_face cube) + v2' = Face.v0 (down_face cube) + v3' = Face.v1 (down_face cube) + fv' = rotate ccwy $ fv cube + vol = tetrahedra_volume cube + +tetrahedron cube 13 = Tetrahedron fv' v0' v1' v2' v3' vol where - v0' = center c - v1' = center (down_face c) - v2' = Face.v1 (down_face c) - v3' = Face.v2 (down_face c) - fv' = rotate ccwy $ rotate ccwz $ fv c - vol = tetrahedra_volume c - -tetrahedron c 14 = + v0' = center cube + v1' = center (down_face cube) + v2' = Face.v1 (down_face cube) + v3' = Face.v2 (down_face cube) + fv' = rotate ccwy $ rotate ccwz $ fv cube + vol = tetrahedra_volume cube + +tetrahedron cube 14 = Tetrahedron fv' v0' v1' v2' v3' vol where - v0' = center c - v1' = center (down_face c) - v2' = Face.v2 (down_face c) - v3' = Face.v3 (down_face c) + v0' = center cube + v1' = center (down_face cube) + v2' = Face.v2 (down_face cube) + v3' = Face.v3 (down_face cube) fv' = rotate ccwy $ rotate ccwz $ rotate ccwz - $ fv c - vol = tetrahedra_volume c + $ fv cube + vol = tetrahedra_volume cube -tetrahedron c 15 = +tetrahedron cube 15 = Tetrahedron fv' v0' v1' v2' v3' vol where - v0' = center c - v1' = center (down_face c) - v2' = Face.v3 (down_face c) - v3' = Face.v0 (down_face c) - fv' = rotate ccwy $ rotate cwz $ fv c - vol = tetrahedra_volume c - -tetrahedron c 16 = + v0' = center cube + v1' = center (down_face cube) + v2' = Face.v3 (down_face cube) + v3' = Face.v0 (down_face cube) + fv' = rotate ccwy $ rotate cwz $ fv cube + vol = tetrahedra_volume cube + +tetrahedron cube 16 = Tetrahedron fv' v0' v1' v2' v3' vol where - v0' = center c - v1' = center (right_face c) - v2' = Face.v0 (right_face c) - v3' = Face.v1 (right_face c) - fv' = rotate ccwz $ fv c - vol = tetrahedra_volume c - -tetrahedron c 17 = + v0' = center cube + v1' = center (right_face cube) + v2' = Face.v0 (right_face cube) + v3' = Face.v1 (right_face cube) + fv' = rotate ccwz $ fv cube + vol = tetrahedra_volume cube + +tetrahedron cube 17 = Tetrahedron fv' v0' v1' v2' v3' vol where - v0' = center c - v1' = center (right_face c) - v2' = Face.v1 (right_face c) - v3' = Face.v2 (right_face c) - fv' = rotate ccwz $ rotate cwy $ fv c - vol = tetrahedra_volume c - -tetrahedron c 18 = + v0' = center cube + v1' = center (right_face cube) + v2' = Face.v1 (right_face cube) + v3' = Face.v2 (right_face cube) + fv' = rotate ccwz $ rotate cwy $ fv cube + vol = tetrahedra_volume cube + +tetrahedron cube 18 = Tetrahedron fv' v0' v1' v2' v3' vol where - v0' = center c - v1' = center (right_face c) - v2' = Face.v2 (right_face c) - v3' = Face.v3 (right_face c) + v0' = center cube + v1' = center (right_face cube) + v2' = Face.v2 (right_face cube) + v3' = Face.v3 (right_face cube) fv' = rotate ccwz $ rotate cwy $ rotate cwy - $ fv c - vol = tetrahedra_volume c + $ fv cube + vol = tetrahedra_volume cube -tetrahedron c 19 = +tetrahedron cube 19 = Tetrahedron fv' v0' v1' v2' v3' vol where - v0' = center c - v1' = center (right_face c) - v2' = Face.v3 (right_face c) - v3' = Face.v0 (right_face c) + v0' = center cube + v1' = center (right_face cube) + v2' = Face.v3 (right_face cube) + v3' = Face.v0 (right_face cube) fv' = rotate ccwz $ rotate ccwy - $ fv c - vol = tetrahedra_volume c + $ fv cube + vol = tetrahedra_volume cube -tetrahedron c 20 = +tetrahedron cube 20 = Tetrahedron fv' v0' v1' v2' v3' vol where - v0' = center c - v1' = center (left_face c) - v2' = Face.v0 (left_face c) - v3' = Face.v1 (left_face c) - fv' = rotate cwz $ fv c - vol = tetrahedra_volume c - -tetrahedron c 21 = + v0' = center cube + v1' = center (left_face cube) + v2' = Face.v0 (left_face cube) + v3' = Face.v1 (left_face cube) + fv' = rotate cwz $ fv cube + vol = tetrahedra_volume cube + +tetrahedron cube 21 = Tetrahedron fv' v0' v1' v2' v3' vol where - v0' = center c - v1' = center (left_face c) - v2' = Face.v1 (left_face c) - v3' = Face.v2 (left_face c) - fv' = rotate cwz $ rotate ccwy $ fv c - vol = tetrahedra_volume c - -tetrahedron c 22 = + v0' = center cube + v1' = center (left_face cube) + v2' = Face.v1 (left_face cube) + v3' = Face.v2 (left_face cube) + fv' = rotate cwz $ rotate ccwy $ fv cube + vol = tetrahedra_volume cube + +tetrahedron cube 22 = Tetrahedron fv' v0' v1' v2' v3' vol where - v0' = center c - v1' = center (left_face c) - v2' = Face.v2 (left_face c) - v3' = Face.v3 (left_face c) + v0' = center cube + v1' = center (left_face cube) + v2' = Face.v2 (left_face cube) + v3' = Face.v3 (left_face cube) fv' = rotate cwz $ rotate ccwy $ rotate ccwy - $ fv c - vol = tetrahedra_volume c + $ fv cube + vol = tetrahedra_volume cube -tetrahedron c 23 = +tetrahedron cube 23 = Tetrahedron fv' v0' v1' v2' v3' vol where - v0' = center c - v1' = center (left_face c) - v2' = Face.v3 (left_face c) - v3' = Face.v0 (left_face c) + v0' = center cube + v1' = center (left_face cube) + v2' = Face.v3 (left_face cube) + v3' = Face.v0 (left_face cube) fv' = rotate cwz $ rotate cwy - $ fv c - vol = tetrahedra_volume c + $ fv cube + vol = tetrahedra_volume cube -- Feels dirty, but whatever. tetrahedron _ _ = error "asked for a nonexistent tetrahedron" @@ -493,101 +488,101 @@ tetrahedron _ _ = error "asked for a nonexistent tetrahedron" -- Only used in tests, so we don't need the added speed -- of Data.Vector. tetrahedra :: Cube -> [Tetrahedron] -tetrahedra c = [ tetrahedron c n | n <- [0..23] ] +tetrahedra cube = [ tetrahedron cube n | n <- [0..23] ] front_left_top_tetrahedra :: Cube -> V.Vector Tetrahedron -front_left_top_tetrahedra c = - V.singleton (tetrahedron c 0) `V.snoc` - (tetrahedron c 3) `V.snoc` - (tetrahedron c 6) `V.snoc` - (tetrahedron c 7) `V.snoc` - (tetrahedron c 20) `V.snoc` - (tetrahedron c 21) +front_left_top_tetrahedra cube = + V.singleton (tetrahedron cube 0) `V.snoc` + (tetrahedron cube 3) `V.snoc` + (tetrahedron cube 6) `V.snoc` + (tetrahedron cube 7) `V.snoc` + (tetrahedron cube 20) `V.snoc` + (tetrahedron cube 21) front_left_down_tetrahedra :: Cube -> V.Vector Tetrahedron -front_left_down_tetrahedra c = - V.singleton (tetrahedron c 0) `V.snoc` - (tetrahedron c 2) `V.snoc` - (tetrahedron c 3) `V.snoc` - (tetrahedron c 12) `V.snoc` - (tetrahedron c 15) `V.snoc` - (tetrahedron c 21) +front_left_down_tetrahedra cube = + V.singleton (tetrahedron cube 0) `V.snoc` + (tetrahedron cube 2) `V.snoc` + (tetrahedron cube 3) `V.snoc` + (tetrahedron cube 12) `V.snoc` + (tetrahedron cube 15) `V.snoc` + (tetrahedron cube 21) front_right_top_tetrahedra :: Cube -> V.Vector Tetrahedron -front_right_top_tetrahedra c = - V.singleton (tetrahedron c 0) `V.snoc` - (tetrahedron c 1) `V.snoc` - (tetrahedron c 5) `V.snoc` - (tetrahedron c 6) `V.snoc` - (tetrahedron c 16) `V.snoc` - (tetrahedron c 19) +front_right_top_tetrahedra cube = + V.singleton (tetrahedron cube 0) `V.snoc` + (tetrahedron cube 1) `V.snoc` + (tetrahedron cube 5) `V.snoc` + (tetrahedron cube 6) `V.snoc` + (tetrahedron cube 16) `V.snoc` + (tetrahedron cube 19) front_right_down_tetrahedra :: Cube -> V.Vector Tetrahedron -front_right_down_tetrahedra c = - V.singleton (tetrahedron c 1) `V.snoc` - (tetrahedron c 2) `V.snoc` - (tetrahedron c 12) `V.snoc` - (tetrahedron c 13) `V.snoc` - (tetrahedron c 18) `V.snoc` - (tetrahedron c 19) +front_right_down_tetrahedra cube = + V.singleton (tetrahedron cube 1) `V.snoc` + (tetrahedron cube 2) `V.snoc` + (tetrahedron cube 12) `V.snoc` + (tetrahedron cube 13) `V.snoc` + (tetrahedron cube 18) `V.snoc` + (tetrahedron cube 19) back_left_top_tetrahedra :: Cube -> V.Vector Tetrahedron -back_left_top_tetrahedra c = - V.singleton (tetrahedron c 0) `V.snoc` - (tetrahedron c 3) `V.snoc` - (tetrahedron c 6) `V.snoc` - (tetrahedron c 7) `V.snoc` - (tetrahedron c 20) `V.snoc` - (tetrahedron c 21) +back_left_top_tetrahedra cube = + V.singleton (tetrahedron cube 0) `V.snoc` + (tetrahedron cube 3) `V.snoc` + (tetrahedron cube 6) `V.snoc` + (tetrahedron cube 7) `V.snoc` + (tetrahedron cube 20) `V.snoc` + (tetrahedron cube 21) back_left_down_tetrahedra :: Cube -> V.Vector Tetrahedron -back_left_down_tetrahedra c = - V.singleton (tetrahedron c 8) `V.snoc` - (tetrahedron c 11) `V.snoc` - (tetrahedron c 14) `V.snoc` - (tetrahedron c 15) `V.snoc` - (tetrahedron c 22) `V.snoc` - (tetrahedron c 23) +back_left_down_tetrahedra cube = + V.singleton (tetrahedron cube 8) `V.snoc` + (tetrahedron cube 11) `V.snoc` + (tetrahedron cube 14) `V.snoc` + (tetrahedron cube 15) `V.snoc` + (tetrahedron cube 22) `V.snoc` + (tetrahedron cube 23) back_right_top_tetrahedra :: Cube -> V.Vector Tetrahedron -back_right_top_tetrahedra c = - V.singleton (tetrahedron c 4) `V.snoc` - (tetrahedron c 5) `V.snoc` - (tetrahedron c 9) `V.snoc` - (tetrahedron c 10) `V.snoc` - (tetrahedron c 16) `V.snoc` - (tetrahedron c 17) +back_right_top_tetrahedra cube = + V.singleton (tetrahedron cube 4) `V.snoc` + (tetrahedron cube 5) `V.snoc` + (tetrahedron cube 9) `V.snoc` + (tetrahedron cube 10) `V.snoc` + (tetrahedron cube 16) `V.snoc` + (tetrahedron cube 17) back_right_down_tetrahedra :: Cube -> V.Vector Tetrahedron -back_right_down_tetrahedra c = - V.singleton (tetrahedron c 8) `V.snoc` - (tetrahedron c 9) `V.snoc` - (tetrahedron c 13) `V.snoc` - (tetrahedron c 14) `V.snoc` - (tetrahedron c 17) `V.snoc` - (tetrahedron c 18) +back_right_down_tetrahedra cube = + V.singleton (tetrahedron cube 8) `V.snoc` + (tetrahedron cube 9) `V.snoc` + (tetrahedron cube 13) `V.snoc` + (tetrahedron cube 14) `V.snoc` + (tetrahedron cube 17) `V.snoc` + (tetrahedron cube 18) in_top_half :: Cube -> Point -> Bool -in_top_half c (_,_,z) = +in_top_half cube (_,_,z) = distance_from_top <= distance_from_bottom where - distance_from_top = abs $ (zmax c) - z - distance_from_bottom = abs $ (zmin c) - z + distance_from_top = abs $ (zmax cube) - z + distance_from_bottom = abs $ (zmin cube) - z in_front_half :: Cube -> Point -> Bool -in_front_half c (x,_,_) = +in_front_half cube (x,_,_) = distance_from_front <= distance_from_back where - distance_from_front = abs $ (xmin c) - x - distance_from_back = abs $ (xmax c) - x + distance_from_front = abs $ (xmin cube) - x + distance_from_back = abs $ (xmax cube) - x in_left_half :: Cube -> Point -> Bool -in_left_half c (_,y,_) = +in_left_half cube (_,y,_) = distance_from_left <= distance_from_right where - distance_from_left = abs $ (ymin c) - y - distance_from_right = abs $ (ymax c) - y + distance_from_left = abs $ (ymin cube) - y + distance_from_right = abs $ (ymax cube) - y -- | Takes a 'Cube', and returns the Tetrahedra belonging to it that @@ -601,39 +596,39 @@ in_left_half c (_,y,_) = -- save us some unnecessary computations. -- find_containing_tetrahedron :: Cube -> Point -> Tetrahedron -find_containing_tetrahedron c p = +find_containing_tetrahedron cube p = candidates `V.unsafeIndex` (fromJust lucky_idx) where - front_half = in_front_half c p - top_half = in_top_half c p - left_half = in_left_half c p + front_half = in_front_half cube p + top_half = in_top_half cube p + left_half = in_left_half cube p candidates = if front_half then if left_half then if top_half then - front_left_top_tetrahedra c + front_left_top_tetrahedra cube else - front_left_down_tetrahedra c + front_left_down_tetrahedra cube else if top_half then - front_right_top_tetrahedra c + front_right_top_tetrahedra cube else - front_right_down_tetrahedra c + front_right_down_tetrahedra cube else -- bottom half if left_half then if top_half then - back_left_top_tetrahedra c + back_left_top_tetrahedra cube else - back_left_down_tetrahedra c + back_left_down_tetrahedra cube else if top_half then - back_right_top_tetrahedra c + back_right_top_tetrahedra cube else - back_right_down_tetrahedra c + back_right_down_tetrahedra cube -- Use the dot product instead of 'distance' here to save a -- sqrt(). So, "distances" below really means "distances squared." @@ -653,28 +648,28 @@ find_containing_tetrahedron c p = -- Quickcheck tests. prop_opposite_octant_tetrahedra_disjoint1 :: Cube -> Bool -prop_opposite_octant_tetrahedra_disjoint1 c = - disjoint (front_left_top_tetrahedra c) (front_right_down_tetrahedra c) +prop_opposite_octant_tetrahedra_disjoint1 cube = + disjoint (front_left_top_tetrahedra cube) (front_right_down_tetrahedra cube) prop_opposite_octant_tetrahedra_disjoint2 :: Cube -> Bool -prop_opposite_octant_tetrahedra_disjoint2 c = - disjoint (back_left_top_tetrahedra c) (back_right_down_tetrahedra c) +prop_opposite_octant_tetrahedra_disjoint2 cube = + disjoint (back_left_top_tetrahedra cube) (back_right_down_tetrahedra cube) prop_opposite_octant_tetrahedra_disjoint3 :: Cube -> Bool -prop_opposite_octant_tetrahedra_disjoint3 c = - disjoint (front_left_top_tetrahedra c) (back_right_top_tetrahedra c) +prop_opposite_octant_tetrahedra_disjoint3 cube = + disjoint (front_left_top_tetrahedra cube) (back_right_top_tetrahedra cube) prop_opposite_octant_tetrahedra_disjoint4 :: Cube -> Bool -prop_opposite_octant_tetrahedra_disjoint4 c = - disjoint (front_left_down_tetrahedra c) (back_right_down_tetrahedra c) +prop_opposite_octant_tetrahedra_disjoint4 cube = + disjoint (front_left_down_tetrahedra cube) (back_right_down_tetrahedra cube) prop_opposite_octant_tetrahedra_disjoint5 :: Cube -> Bool -prop_opposite_octant_tetrahedra_disjoint5 c = - disjoint (front_left_top_tetrahedra c) (back_left_down_tetrahedra c) +prop_opposite_octant_tetrahedra_disjoint5 cube = + disjoint (front_left_top_tetrahedra cube) (back_left_down_tetrahedra cube) prop_opposite_octant_tetrahedra_disjoint6 :: Cube -> Bool -prop_opposite_octant_tetrahedra_disjoint6 c = - disjoint (front_right_top_tetrahedra c) (back_right_down_tetrahedra c) +prop_opposite_octant_tetrahedra_disjoint6 cube = + disjoint (front_right_top_tetrahedra cube) (back_right_down_tetrahedra cube) -- | Since the grid size is necessarily positive, all tetrahedra