From: Michael Orlitzky Date: Sun, 18 Nov 2012 05:26:11 +0000 (-0500) Subject: Add more tests and examples. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=9cf845989f17d70c8520f7c4a464f71b10535c0c;p=sage.d.git Add more tests and examples. Fix the orthogonality test. --- diff --git a/mjo/orthogonal_polynomials.py b/mjo/orthogonal_polynomials.py index edea32b..808a558 100644 --- a/mjo/orthogonal_polynomials.py +++ b/mjo/orthogonal_polynomials.py @@ -1,5 +1,4 @@ from sage.all import * -from sage.symbolic.expression import is_Expression def legendre_p(n, x, a = -1, b = 1): """ @@ -29,6 +28,36 @@ def legendre_p(n, x, a = -1, b = 1): returned. Otherwise, the value of the ``n``th polynomial at ``x`` will be returned. + EXAMPLES: + + Create the standard Legendre polynomials in `x`:: + + sage: legendre_p(0,x) + 1 + sage: legendre_p(1,x) + x + + Reuse the variable from a polynomial ring:: + sage: P. = QQ[] + sage: legendre_p(2,t).simplify_rational() + 3/2*t^2 - 1/2 + + If ``x`` is a real number, the result should be as well:: + + sage: legendre_p(3, 1.1) + 1.67750000000000 + + Similarly for complex numbers:: + + sage: legendre_p(3, 1 + I) + 7/2*I - 13/2 + + Even matrices work:: + + sage: legendre_p(3, MatrixSpace(ZZ, 2)([1, 2, -4, 7])) + [-179 242] + [-484 547] + TESTS: We should agree with Maxima for all `n`:: @@ -55,10 +84,11 @@ def legendre_p(n, x, a = -1, b = 1): 1 Two different polynomials should be orthogonal with respect to the - inner product over [a,b]:: + inner product over `[a,b]`. Note that this test can fail if QQ is + replaced with RR, since integrate() can return NaN:: - sage: a = RR.random_element() - sage: b = RR.random_element() + sage: a = QQ.random_element() + sage: b = QQ.random_element() sage: j = ZZ.random_element(20) sage: k = j + 1 sage: Pj = legendre_p(j, x, a, b) @@ -81,6 +111,13 @@ def legendre_p(n, x, a = -1, b = 1): sage: bool(legendre_p(3, x, 0, 1) == p3) True + The zeroth polynomial is an element of the ring that we're working + in:: + + sage: legendre_p(0, MatrixSpace(ZZ, 2)([1, 2, -4, 7])) + [1 0] + [0 1] + """ if not n in ZZ: raise TypeError('n must be a natural number') @@ -91,8 +128,15 @@ def legendre_p(n, x, a = -1, b = 1): if not (a in RR and b in RR): raise TypeError('both `a` and `b` must be real numbers') - a = RR(a) - b = RR(b) + if n == 0: + # Easy base case, save time. Attempt to return a value in the + # same field/ring as `x`. + return x.parent()(1) + + # Even though we know a,b are real we use the symbolic ring. This + # lets us return pretty expressions where possible. + a = SR(a) + b = SR(b) n = ZZ(n) # Ensure that 1/(2**n) is not integer division. dn = 1/(2**n) @@ -111,9 +155,4 @@ def legendre_p(n, x, a = -1, b = 1): # From Abramowitz & Stegun, (22.3.2) with alpha = beta = 0. P = dn * sum([ c(m)*g(m) for m in range(0,n+1) ]) - # If `x` is a symbolic expression, we want to return a symbolic - # expression (even if that expression is e.g. `1`). - if is_Expression(x): - P = SR(P) - return P