From: Michael Orlitzky Date: Sat, 19 Sep 2015 01:50:10 +0000 (-0400) Subject: Remove matrix_simplify_full(), this was merged in trac #12162. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=9a54d103cff735ebfb9779f288e76e3122bc27fc;p=sage.d.git Remove matrix_simplify_full(), this was merged in trac #12162. --- diff --git a/mjo/symbolic.py b/mjo/symbolic.py index 3760596..e2645a3 100644 --- a/mjo/symbolic.py +++ b/mjo/symbolic.py @@ -44,47 +44,3 @@ def safe_simplify(expr): expr = expr.simplify_factorial() expr = expr.simplify_log() return expr - - -def matrix_simplify_full(A): - """ - Simplify each entry of a symbolic matrix using the - Expression.simplify_full() method. - - INPUT: - - - ``A`` - The matrix whose entries we should simplify. - - OUTPUT: - - A copy of ``A`` with all of its entries simplified. - - EXAMPLES: - - Symbolic matrices (examples stolen from Expression.simplify_full()) - will have their entries simplified:: - - sage: a,n,k = SR.var('a,n,k') - sage: f1 = sin(x)^2 + cos(x)^2 - sage: f2 = sin(x/(x^2 + x)) - sage: f3 = binomial(n,k)*factorial(k)*factorial(n-k) - sage: f4 = x*sin(2)/(x^a) - sage: A = matrix(SR, [[f1,f2],[f3,f4]]) - sage: matrix_simplify_full(A) - [ 1 sin(1/(x + 1))] - [ factorial(n) x^(-a + 1)*sin(2)] - - But an exception will be raised if ``A`` is not symbolic:: - - sage: A = matrix(QQ, [[1,2],[3,4]]) - sage: matrix_simplify_full(A) - Traceback (most recent call last): - ... - ValueError: The base ring of `A` must be the Symbolic Ring. - - """ - if not A.base_ring() == SR: - raise ValueError('The base ring of `A` must be the Symbolic Ring.') - - M = A.matrix_space() - return M(map(lambda x: x.simplify_full(), A))