From: Michael Orlitzky Date: Fri, 2 Nov 2018 02:30:04 +0000 (-0400) Subject: cone/faces.py: add preliminary dual_face() operation. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=924b894e3f5f11886809058fd210f124a1f3f22f;p=sage.d.git cone/faces.py: add preliminary dual_face() operation. --- diff --git a/mjo/cone/faces.py b/mjo/cone/faces.py index 8e5f243..a682016 100644 --- a/mjo/cone/faces.py +++ b/mjo/cone/faces.py @@ -1,5 +1,6 @@ from sage.all import * + def face_generated_by(K,S): r""" Return the intersection of all faces of ``K`` that contain ``S``. @@ -130,3 +131,68 @@ def face_generated_by(K,S): raise ValueError('S is not a subset of the cone') else: return face_lattice.sorted(candidates)[0] + + +def dual_face(K,F): + r""" + Return the dual face of ``F`` with respect to the cone ``K``. + + OUTPUT: + + A face of ``K.dual()``. + + REFERENCES: + + .. [Tam] Bit-Shun Tam. On the duality operator of a convex cone. Linear + Algebra and its Applications, 64:33-56, 1985, doi:10.1016/0024-3795(85) + 90265-4. + + SETUP:: + + sage: from mjo.cone.faces import dual_face + + EXAMPLES: + + The dual face of the first standard basis vector in three dimensions + is the face generated by the other two standard basis vectors:: + + sage: K = Cone([(1,0,0),(0,1,0),(0,0,1)]) + sage: F = Cone([(1,0,0)]) + sage: dual_face(K,F).rays() + M(0, 0, 1), + M(0, 1, 0) + in 3-d lattice M + + TESTS: + + The dual face of ``K`` with respect to itself should be the + lineality space of its dual [Tam]_:: + + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim=8, max_rays=10) + sage: K_dual = K.dual() + sage: lKd_gens = [ dir*l for dir in [1,-1] for l in K_dual.lines() ] + sage: linspace_K_dual = Cone(lKd_gens, K_dual.lattice()) + sage: dual_face(K,K).is_equivalent(linspace_K_dual) + True + + If ``K`` is proper, then the dual face of its trivial face is the + dual of ``K`` [Tam]_:: + + sage: set_random_seed() + sage: K = random_cone(max_ambient_dim=8, + ....: max_rays=10, + ....: strictly_convex=True, + ....: solid=True) + sage: L = K.lattice() + sage: trivial_face = Cone([L.zero()], L) + sage: dual_face(K,trivial_face).is_equivalent(K.dual()) + True + + """ + # Ensure that F is actually a face of K before continuing. + if not F.is_face_of(K): + raise ValueError("%s is not a face of %s" % (F,K)) + + span_F = Cone([c*g for c in [1,-1] for g in F], F.lattice()) + return K.dual().intersection(span_F.dual())