From: Michael Orlitzky Date: Wed, 5 Feb 2014 01:33:31 +0000 (-0500) Subject: Add the Integration.Gaussian.nodes_and_weights function. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=907977c61c9d817e1270541ab481586a986cc21c;p=numerical-analysis.git Add the Integration.Gaussian.nodes_and_weights function. --- diff --git a/src/Integration/Gaussian.hs b/src/Integration/Gaussian.hs index 3169b20..5d683f6 100644 --- a/src/Integration/Gaussian.hs +++ b/src/Integration/Gaussian.hs @@ -1,19 +1,28 @@ +{-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE NoImplicitPrelude #-} {-# LANGUAGE ScopedTypeVariables #-} -- | Gaussian quadrature over [-1, 1] using the Legendre polynomials. -- module Integration.Gaussian ( - jacobi_matrix ) + jacobi_matrix, + nodes_and_weights ) where import Algebra.Absolute ( abs ) import qualified Algebra.Algebraic as Algebraic ( C ) import qualified Algebra.Ring as Ring ( C ) -import Data.Vector.Fixed ( Arity ) +import Data.Vector.Fixed ( Arity, S ) import NumericPrelude hiding ( abs ) -import Linear.Matrix ( Mat(..), construct ) +import Linear.Matrix ( + Col, + Mat(..), + construct, + identity_matrix, + matmap, + row', + transpose ) import Linear.QR ( eigenvectors_symmetric ) @@ -37,7 +46,7 @@ import Linear.QR ( eigenvectors_symmetric ) -- True -- jacobi_matrix :: forall m a. (Arity m, Algebraic.C a, Ring.C a) - => Mat m m a + => Mat (S m) (S m) a jacobi_matrix = construct lambda where @@ -57,3 +66,54 @@ jacobi_matrix = in sqrt $ (coeff_a (k-1)) * (coeff_c k) | otherwise = fromInteger 0 + + + +-- | Compute the nodes/weights for Gaussian quadrature over [-1,1] +-- using the Legendre polynomials. The test cases can all be found +-- on e.g. Wikipedia. +-- +-- Examples: +-- +-- >>> import Linear.Matrix ( Col2, frobenius_norm, fromList ) +-- +-- >>> let (ns,ws) = nodes_and_weights 1000 :: (Col2 Double, Col2 Double) +-- >>> let c = 1/(sqrt 3) +-- >>> let expected_ns = fromList [[-c],[c]] :: Col2 Double +-- >>> let expected_ws = fromList [[1],[1]] :: Col2 Double +-- >>> frobenius_norm (ns - expected_ns) < 1e-12 +-- True +-- >>> frobenius_norm (ws - expected_ws) < 1e-12 +-- True +-- +nodes_and_weights :: forall m a. + (Arity m, Eq a, Algebraic.C a) + => Int + -> (Col (S m) a, Col (S m) a) +nodes_and_weights iterations = + (nodes, weights) + where + jac = jacobi_matrix + + -- A shift is needed to make sure the QR algorithm + -- converges. Since the roots (and thus eigenvalues) of orthogonal + -- polynomials are real and distinct, there does exist a shift + -- that will make it work. We guess lambda=1 makes it work. + + shifted_jac = jac - identity_matrix + (shifted_nodes, vecs) = eigenvectors_symmetric iterations shifted_jac + + ones :: Col (S m) a + ones = construct (\_ _ -> fromInteger 1) + + nodes :: Col (S m) a + nodes = shifted_nodes + ones -- unshift the nodes + + -- Get the first component of each column. + first_components = row' vecs 0 + + -- Square it and multiply by 2; see the Golub-Welsch paper for + -- this magic. + weights_row = matmap (\x -> (fromInteger 2)*x^2) first_components + + weights = transpose $ weights_row