From: Michael Orlitzky Date: Tue, 9 Jun 2020 11:56:07 +0000 (-0400) Subject: eja: implement JordanSpinEJA with BilinearFormEJA. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=7dd1a157df55b7aad13baf051d2930524d300c78;p=sage.d.git eja: implement JordanSpinEJA with BilinearFormEJA. --- diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index 374af54..8bee729 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -2017,7 +2017,7 @@ class BilinearFormEJA(FiniteDimensionalEuclideanJordanAlgebra, KnownRankEJA): return x[0]*y[0] + (self._B*xbar).inner_product(ybar) -class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra, KnownRankEJA): +class JordanSpinEJA(BilinearFormEJA): """ The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)`` with the usual inner product and jordan product ``x*y = @@ -2054,42 +2054,9 @@ class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra, KnownRankEJA): sage: JordanSpinEJA(2, prefix='B').gens() (B0, B1) - """ - def __init__(self, n, field=QQ, **kwargs): - V = VectorSpace(field, n) - mult_table = [[V.zero() for j in range(n)] for i in range(n)] - for i in range(n): - for j in range(n): - x = V.gen(i) - y = V.gen(j) - x0 = x[0] - xbar = x[1:] - y0 = y[0] - ybar = y[1:] - # z = x*y - z0 = x.inner_product(y) - zbar = y0*xbar + x0*ybar - z = V([z0] + zbar.list()) - mult_table[i][j] = z - - # The rank of the spin algebra is two, unless we're in a - # one-dimensional ambient space (because the rank is bounded by - # the ambient dimension). - fdeja = super(JordanSpinEJA, self) - return fdeja.__init__(field, mult_table, rank=min(n,2), **kwargs) - - def inner_product(self, x, y): - """ - Faster to reimplement than to use natural representations. - - SETUP:: - - sage: from mjo.eja.eja_algebra import JordanSpinEJA - - TESTS: + TESTS: - Ensure that this is the usual inner product for the algebras - over `R^n`:: + Ensure that we have the usual inner product on `R^n`:: sage: set_random_seed() sage: J = JordanSpinEJA.random_instance() @@ -2099,8 +2066,11 @@ class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra, KnownRankEJA): sage: x.inner_product(y) == J.natural_inner_product(X,Y) True - """ - return x.to_vector().inner_product(y.to_vector()) + """ + def __init__(self, n, field=QQ, **kwargs): + # This is a special case of the BilinearFormEJA with the identity + # matrix as its bilinear form. + return super(JordanSpinEJA, self).__init__(n, field, **kwargs) class TrivialEJA(FiniteDimensionalEuclideanJordanAlgebra, KnownRankEJA):