From: Michael Orlitzky Date: Mon, 5 Sep 2011 22:31:25 +0000 (-0400) Subject: Speed up the find_containing_tetrahedron function by using Data.Vector. X-Git-Tag: 0.0.1~157 X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=7a0d15a1fcdd00ae94b2a1b135ed095033667108;p=spline3.git Speed up the find_containing_tetrahedron function by using Data.Vector. --- diff --git a/src/Cube.hs b/src/Cube.hs index 6e31f19..54fda14 100644 --- a/src/Cube.hs +++ b/src/Cube.hs @@ -1,7 +1,16 @@ module Cube where -import Data.List ( (\\) ) +import Data.Maybe (fromJust) +import qualified Data.Vector as V ( + Vector, + findIndex, + map, + minimum, + singleton, + snoc, + unsafeIndex + ) import Test.QuickCheck (Arbitrary(..), Gen, Positive(..), choose) import Cardinal @@ -462,39 +471,82 @@ tetrahedron c 23 = tetrahedron _ _ = error "asked for a nonexistent tetrahedron" +-- Only used in tests, so we don't need the added speed +-- of Data.Vector. tetrahedra :: Cube -> [Tetrahedron] -tetrahedra c = - [ tetrahedron c n | n <- [0..23] ] - --- | All completely contained in the front half of the cube. -front_half_tetrahedra :: Cube -> [Tetrahedron] -front_half_tetrahedra c = - [ tetrahedron c n | n <- [0,1,2,3,6,12,19,21] ] - --- | All tetrahedra completely contained in the top half of the cube. -top_half_tetrahedra :: Cube -> [Tetrahedron] -top_half_tetrahedra c = - [ tetrahedron c n | n <- [4,5,6,7,0,10,16,20] ] - --- | All tetrahedra completely contained in the back half of the cube. -back_half_tetrahedra :: Cube -> [Tetrahedron] -back_half_tetrahedra c = - [ tetrahedron c n | n <- [8,9,10,11,4,14,17,23] ] - --- | All tetrahedra completely contained in the down half of the cube. -down_half_tetrahedra :: Cube -> [Tetrahedron] -down_half_tetrahedra c = - [ tetrahedron c n | n <- [12,13,14,15,2,8,18,22] ] - --- | All tetrahedra completely contained in the right half of the cube. -right_half_tetrahedra :: Cube -> [Tetrahedron] -right_half_tetrahedra c = - [ tetrahedron c n | n <- [16,17,18,19,1,5,9,13] ] - --- | All tetrahedra completely contained in the left half of the cube. -left_half_tetrahedra :: Cube -> [Tetrahedron] -left_half_tetrahedra c = - [ tetrahedron c n | n <- [20,21,22,23,3,7,11,15] ] +tetrahedra c = [ tetrahedron c n | n <- [0..23] ] + +front_left_top_tetrahedra :: Cube -> V.Vector Tetrahedron +front_left_top_tetrahedra c = + V.singleton (tetrahedron c 0) `V.snoc` + (tetrahedron c 3) `V.snoc` + (tetrahedron c 6) `V.snoc` + (tetrahedron c 7) `V.snoc` + (tetrahedron c 20) `V.snoc` + (tetrahedron c 21) + +front_left_down_tetrahedra :: Cube -> V.Vector Tetrahedron +front_left_down_tetrahedra c = + V.singleton (tetrahedron c 0) `V.snoc` + (tetrahedron c 2) `V.snoc` + (tetrahedron c 3) `V.snoc` + (tetrahedron c 12) `V.snoc` + (tetrahedron c 15) `V.snoc` + (tetrahedron c 21) + +front_right_top_tetrahedra :: Cube -> V.Vector Tetrahedron +front_right_top_tetrahedra c = + V.singleton (tetrahedron c 0) `V.snoc` + (tetrahedron c 1) `V.snoc` + (tetrahedron c 5) `V.snoc` + (tetrahedron c 6) `V.snoc` + (tetrahedron c 16) `V.snoc` + (tetrahedron c 19) + +front_right_down_tetrahedra :: Cube -> V.Vector Tetrahedron +front_right_down_tetrahedra c = + V.singleton (tetrahedron c 1) `V.snoc` + (tetrahedron c 2) `V.snoc` + (tetrahedron c 12) `V.snoc` + (tetrahedron c 13) `V.snoc` + (tetrahedron c 18) `V.snoc` + (tetrahedron c 19) + +back_left_top_tetrahedra :: Cube -> V.Vector Tetrahedron +back_left_top_tetrahedra c = + V.singleton (tetrahedron c 0) `V.snoc` + (tetrahedron c 3) `V.snoc` + (tetrahedron c 6) `V.snoc` + (tetrahedron c 7) `V.snoc` + (tetrahedron c 20) `V.snoc` + (tetrahedron c 21) + +back_left_down_tetrahedra :: Cube -> V.Vector Tetrahedron +back_left_down_tetrahedra c = + V.singleton (tetrahedron c 8) `V.snoc` + (tetrahedron c 11) `V.snoc` + (tetrahedron c 14) `V.snoc` + (tetrahedron c 15) `V.snoc` + (tetrahedron c 22) `V.snoc` + (tetrahedron c 23) + +back_right_top_tetrahedra :: Cube -> V.Vector Tetrahedron +back_right_top_tetrahedra c = + V.singleton (tetrahedron c 4) `V.snoc` + (tetrahedron c 5) `V.snoc` + (tetrahedron c 9) `V.snoc` + (tetrahedron c 10) `V.snoc` + (tetrahedron c 16) `V.snoc` + (tetrahedron c 17) + +back_right_down_tetrahedra :: Cube -> V.Vector Tetrahedron +back_right_down_tetrahedra c = + V.singleton (tetrahedron c 8) `V.snoc` + (tetrahedron c 9) `V.snoc` + (tetrahedron c 13) `V.snoc` + (tetrahedron c 14) `V.snoc` + (tetrahedron c 17) `V.snoc` + (tetrahedron c 18) in_top_half :: Cube -> Point -> Bool in_top_half c (_,_,z) = @@ -531,33 +583,41 @@ in_left_half c (_,y,_) = -- find_containing_tetrahedron :: Cube -> Point -> Tetrahedron find_containing_tetrahedron c p = - head containing_tetrahedra + candidates `V.unsafeIndex` (fromJust lucky_idx) where - candidates = tetrahedra c - non_candidates_x = - if (in_front_half c p) then - back_half_tetrahedra c + front_half = in_front_half c p + top_half = in_top_half c p + left_half = in_left_half c p + + candidates = + if front_half then + + if left_half then + if top_half then + front_left_top_tetrahedra c + else + front_left_down_tetrahedra c else - front_half_tetrahedra c - - candidates_x = candidates \\ non_candidates_x - - non_candidates_y = - if (in_left_half c p) then - right_half_tetrahedra c - else - left_half_tetrahedra c - - candidates_xy = candidates_x \\ non_candidates_y - - non_candidates_z = - if (in_top_half c p) then - down_half_tetrahedra c - else - top_half_tetrahedra c - - candidates_xyz = candidates_xy \\ non_candidates_z - - contains_our_point = flip contains_point p - containing_tetrahedra = filter contains_our_point candidates_xyz - + if top_half then + front_right_top_tetrahedra c + else + front_right_down_tetrahedra c + + else -- bottom half + + if left_half then + if top_half then + back_left_top_tetrahedra c + else + back_left_down_tetrahedra c + else + if top_half then + back_right_top_tetrahedra c + else + back_right_down_tetrahedra c + + -- Use the dot product instead of 'distance' here to save a + -- sqrt(). So, "distances" below really means "distances squared." + distances = V.map ((dot p) . center) candidates + shortest_distance = V.minimum distances + lucky_idx = V.findIndex (\t -> (center t) `dot` p == shortest_distance)