From: Michael Orlitzky Date: Sun, 3 Feb 2013 17:16:43 +0000 (-0500) Subject: Begin implementation of normed, fixed-length vectors. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=74e79199dcfec0639133ae9990dc33a2c5a095f0;p=numerical-analysis.git Begin implementation of normed, fixed-length vectors. --- diff --git a/src/FixedVector.hs b/src/FixedVector.hs new file mode 100644 index 0000000..c01ae60 --- /dev/null +++ b/src/FixedVector.hs @@ -0,0 +1,98 @@ +{-# LANGUAGE FlexibleContexts #-} +{-# LANGUAGE FlexibleInstances #-} +{-# LANGUAGE MultiParamTypeClasses #-} +{-# LANGUAGE ScopedTypeVariables #-} +{-# LANGUAGE TypeFamilies #-} + +module FixedVector +where + +import Data.Vector.Fixed as V +import Data.Vector.Fixed.Boxed +import Data.Vector.Fixed.Internal + +import Normed + +-- | The Vn newtype simply wraps (Vector v a) so that we avoid +-- undecidable instances. +newtype Vn a = Vn a + deriving (Show) + +-- | We would really like to say, "anything that is a vector of +-- equatable things is itself equatable." The 'Vn' class +-- allows us to express this without a GHC battle. +-- +-- Examples: +-- +-- >>> let v1 = make2d (1,2) +-- >>> let v2 = make2d (1,2) +-- >>> let v3 = make2d (3,4) +-- >>> v1 == v2 +-- True +-- >>> v1 == v3 +-- False +-- +instance (Eq a, Vector v a, Vector v Bool) => Eq (Vn (v a)) where + (Vn v1) == (Vn v2) = V.foldl (&&) True (V.zipWith (==) v1 v2) + +-- | The use of 'Num' here is of course incorrect (otherwise, we +-- wouldn't have to throw errors). But it's really nice to be able +-- to use normal addition/subtraction. +instance (Num a, Vector v a) => Num (Vn (v a)) where + -- | Componentwise addition. + -- + -- Examples: + -- + -- >>> let v1 = make2d (1,2) + -- >>> let v2 = make2d (3,4) + -- >>> v1 + v2 + -- Vn fromList [4,6] + -- + (Vn v1) + (Vn v2) = Vn $ V.zipWith (+) v1 v2 + + (Vn v1) - (Vn v2) = Vn $ V.zipWith (-) v1 v2 + fromInteger x = Vn $ V.replicate (fromInteger x) + (*) = error "multiplication of vectors is undefined" + abs = error "absolute value of vectors is undefined" + signum = error "signum of vectors is undefined" + +instance Functor Vn where + fmap f (Vn v1) = Vn (f v1) + +instance (RealFloat a, Ord a, Vector v a) => Normed (Vn (v a)) where + -- We don't use V.maximum here because it relies on a type + -- constraint that the vector be non-empty and I don't know how to + -- pattern match it away. + norm_infty (Vn v1) = fromRational $ toRational $ V.foldl max 0 v1 + + norm_p p (Vn v1) = + fromRational $ toRational $ root $ V.sum $ V.map (exponentiate . abs) v1 + where + exponentiate = (** (fromIntegral p)) + root = (** (recip (fromIntegral p))) + +-- | Dot (standard inner) product. +dot :: (Num a, Vector v a) => Vn (v a) -> Vn (v a) -> a +dot (Vn v1) (Vn v2) = V.sum $ V.zipWith (*) v1 v2 + +-- | The angle between @v1@ and @v2@ in Euclidean space. +angle :: (RealFloat a, Vector v a) => Vn (v a) -> Vn (v a) -> a +angle v1 v2 = + acos theta + where + theta = (v1 `dot` v2) / norms + norms = (norm_p 2 v1) * (norm_p 2 v2) + +-- | Convenience function for 2d vectors. +make2d :: forall a. (a,a) -> Vn (Vec2 a) +make2d (x,y) = + Vn v1 + where + v1 = vec $ con |> x |> y :: Vec2 a + +-- | Convenience function for 3d vectors. +make3d :: forall a. (a,a,a) -> Vn (Vec3 a) +make3d (x,y,z) = + Vn v1 + where + v1 = vec $ con |> x |> y |> z :: Vec3 a diff --git a/src/Normed.hs b/src/Normed.hs new file mode 100644 index 0000000..b60c2b1 --- /dev/null +++ b/src/Normed.hs @@ -0,0 +1,29 @@ +{-# LANGUAGE FlexibleInstances #-} + +-- | The 'Normed' class represents elements of a normed vector +-- space. We define instances for all common numeric types. +module Normed +where + +import Data.Number.BigFloat + +class Normed a where + norm_p :: (Integral c, RealFrac b) => c -> a -> b + norm_infty :: RealFrac b => a -> b + +-- Define instances for common numeric types. +instance Normed Integer where + norm_p _ = fromInteger + norm_infty = fromInteger + +instance Normed Rational where + norm_p _ = fromRational + norm_infty = fromRational + +instance Epsilon e => Normed (BigFloat e) where + norm_p _ = fromRational . toRational + norm_infty = fromRational . toRational + +instance Normed Double where + norm_p _ = fromRational . toRational + norm_infty = fromRational . toRational