From: Michael Orlitzky Date: Tue, 11 Feb 2014 20:07:53 +0000 (-0500) Subject: Fix backward_substitute. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=7221311858e4029c2f2d2de6bfdca2dd641548dc;p=numerical-analysis.git Fix backward_substitute. Add 'solve_positive_definite' to Linear.System. Add tests for everything in Linear.System. --- diff --git a/src/Linear/System.hs b/src/Linear/System.hs index 2d75f61..d68805a 100644 --- a/src/Linear/System.hs +++ b/src/Linear/System.hs @@ -4,23 +4,36 @@ module Linear.System ( backward_substitute, - forward_substitute ) + forward_substitute, + solve_positive_definite ) where -import Data.Vector.Fixed ( Arity, N1 ) +import qualified Algebra.Algebraic as Algebraic ( C ) +import Data.Vector.Fixed ( Arity ) import NumericPrelude hiding ( (*), abs ) import qualified NumericPrelude as NP ( (*) ) import qualified Algebra.Field as Field ( C ) -import Linear.Matrix ( Mat(..), (!!!), construct, transpose ) +import Linear.Matrix ( + Col, + Mat(..), + (!!!), + cholesky, + construct, + is_lower_triangular, + is_upper_triangular, + ncols, + transpose ) --- | Solve the system m' * x = b', where m' is upper-triangular. Will +-- | Solve the system m' * x = b', where m' is lower-triangular. Will -- probably crash if m' is non-singular. The result is the vector x. -- -- Examples: -- --- >>> import Linear.Matrix ( Mat2, Mat3, fromList, vec2d, vec3d ) +-- >>> import Linear.Matrix ( Mat2, Mat3, frobenius_norm, fromList ) +-- >>> import Linear.Matrix ( vec2d, vec3d ) +-- >>> import Naturals ( N7 ) -- -- >>> let identity = fromList [[1,0,0],[0,1,0],[0,0,1]] :: Mat3 Double -- >>> let b = vec3d (1, 2, 3::Double) @@ -39,11 +52,44 @@ import Linear.Matrix ( Mat(..), (!!!), construct, transpose ) -- >>> forward_substitute m b -- ((0.5),(0.75)) -- -forward_substitute :: forall a m. (Field.C a, Arity m) +-- >>> let f1 = [0.0418] +-- >>> let f2 = [0.0805] +-- >>> let f3 = [0.1007] +-- >>> let f4 = [-0.0045] +-- >>> let f5 = [-0.0332] +-- >>> let f6 = [-0.0054] +-- >>> let f7 = [-0.0267] +-- >>> let big_F = fromList [f1,f2,f3,f4,f5,f6,f7] :: Col N7 Double +-- >>> let k1 = [6, -3, 0, 0, 0, 0, 0] :: [Double] +-- >>> let k2 = [-3, 10.5, -7.5, 0, 0, 0, 0] :: [Double] +-- >>> let k3 = [0, -7.5, 12.5, 0, 0, 0, 0] :: [Double] +-- >>> let k4 = [0, 0, 0, 6, 0, 0, 0] :: [Double] +-- >>> let k5 = [0, 0, 0, 0, 6, 0, 0] :: [Double] +-- >>> let k6 = [0, 0, 0, 0, 0, 6, 0] :: [Double] +-- >>> let k7 = [0, 0, 0, 0, 0, 0, 15] :: [Double] +-- >>> let big_K = fromList [k1,k2,k3,k4,k5,k6,k7] :: Mat N7 N7 Double +-- >>> let r = cholesky big_K +-- >>> let rt = transpose r +-- >>> let e1 = [0.0170647785413895] :: [Double] +-- >>> let e2 = [0.0338] :: [Double] +-- >>> let e3 = [0.07408] :: [Double] +-- >>> let e4 = [-0.00183711730708738] :: [Double] +-- >>> let e5 = [-0.0135538432434003] :: [Double] +-- >>> let e6 = [-0.00220454076850486] :: [Double] +-- >>> let e7 = [-0.00689391035624920] :: [Double] +-- >>> let expected = fromList [e1,e2,e3,e4,e5,e6,e7] :: Col N7 Double +-- >>> let actual = forward_substitute rt big_F +-- >>> frobenius_norm (actual - expected) < 1e-10 +-- True +-- +forward_substitute :: forall a m. (Eq a, Field.C a, Arity m) => Mat m m a - -> Mat m N1 a - -> Mat m N1 a -forward_substitute m' b' = x' + -> Col m a + -> Col m a +forward_substitute m' b' + | not (is_lower_triangular m') = + error "forward substitution on non-lower-triangular matrix" + | otherwise = x' where x' = construct lambda @@ -67,7 +113,7 @@ forward_substitute m' b' = x' j <- [0..k-1] ]) / (m k k) --- | Solve the system m*x = b, where m is lower-triangular. Will +-- | Solve the system m*x = b, where m is upper-triangular. Will -- probably crash if m is non-singular. The result is the vector x. -- -- Examples: @@ -81,21 +127,91 @@ forward_substitute m' b' = x' -- >>> (backward_substitute identity b) == b -- True -- -backward_substitute :: (Field.C a, Arity m) +-- >>> let m1 = fromList [[1,1,1], [0,1,1], [0,0,1]] :: Mat3 Double +-- >>> let b = vec3d (1,1,1::Double) +-- >>> backward_substitute m1 b +-- ((0.0),(0.0),(1.0)) +-- +backward_substitute :: forall m a. (Eq a, Field.C a, Arity m) => Mat m m a - -> Mat m N1 a - -> Mat m N1 a -backward_substitute m = - forward_substitute (transpose m) + -> Col m a + -> Col m a +backward_substitute m' b' + | not (is_upper_triangular m') = + error "backward substitution on non-upper-triangular matrix" + | otherwise = x' + where + x' = construct lambda + + -- Convenient accessor for the elements of b'. + b :: Int -> a + b k = b' !!! (k, 0) + + -- Convenient accessor for the elements of m'. + m :: Int -> Int -> a + m i j = m' !!! (i, j) + + -- Convenient accessor for the elements of x'. + x :: Int -> a + x k = x' !!! (k, 0) + + -- The second argument to lambda should always be zero here, so we + -- ignore it. + lambda :: Int -> Int -> a + lambda k _ + | k == n = (b k) / (m k k) + | otherwise = ((b k) - sum [ (m k j) NP.* (x j) | + j <- [k+1..n] ]) / (m k k) + where + n = (ncols m') - 1 -- | Solve the linear system m*x = b where m is positive definite. -{- -solve_positive_definite :: Mat v w a -> Mat w z a +-- +-- Examples: +-- +-- >>> import Linear.Matrix ( Col4, frobenius_norm, fromList ) +-- >>> import Naturals ( N7 ) +-- +-- >>> let f1 = [0.0418] +-- >>> let f2 = [0.0805] +-- >>> let f3 = [0.1007] +-- >>> let f4 = [-0.0045] +-- >>> let f5 = [-0.0332] +-- >>> let f6 = [-0.0054] +-- >>> let f7 = [-0.0267] +-- >>> let big_F = fromList [f1,f2,f3,f4,f5,f6,f7] :: Col N7 Double +-- +-- >>> let k1 = [6, -3, 0, 0, 0, 0, 0] :: [Double] +-- >>> let k2 = [-3, 10.5, -7.5, 0, 0, 0, 0] :: [Double] +-- >>> let k3 = [0, -7.5, 12.5, 0, 0, 0, 0] :: [Double] +-- >>> let k4 = [0, 0, 0, 6, 0, 0, 0] :: [Double] +-- >>> let k5 = [0, 0, 0, 0, 6, 0, 0] :: [Double] +-- >>> let k6 = [0, 0, 0, 0, 0, 6, 0] :: [Double] +-- >>> let k7 = [0, 0, 0, 0, 0, 0, 15] :: [Double] +-- >>> let big_K = fromList [k1,k2,k3,k4,k5,k6,k7] :: Mat N7 N7 Double +-- +-- >>> let e1 = [1871/75000] :: [Double] +-- >>> let e2 = [899/25000] :: [Double] +-- >>> let e3 = [463/15625] :: [Double] +-- >>> let e4 = [-3/4000] :: [Double] +-- >>> let e5 = [-83/15000] :: [Double] +-- >>> let e6 = [-9/10000] :: [Double] +-- >>> let e7 = [-89/50000] :: [Double] +-- >>> let expected = fromList [e1,e2,e3,e4,e5,e6,e7] :: Col N7 Double +-- >>> let actual = solve_positive_definite big_K big_F +-- >>> frobenius_norm (actual - expected) < 1e-12 +-- True +-- +solve_positive_definite :: (Arity m, Algebraic.C a, Eq a, Field.C a) + => Mat m m a + -> Col m a + -> Col m a solve_positive_definite m b = x where r = cholesky m - -- First we solve r^T * y == b for y. Then let y=r*x - rx = forward_substitute (transpose r) b - -- Now solve r*x == b. --} + -- Now, r^T*r*x = b. Let r*x = y, so the system looks like + -- r^T * y = b. We can solve this for y. + y = forward_substitute (transpose r) b + -- Now solve r*x = y to find the value of x. + x = backward_substitute r y