From: Michael Orlitzky Date: Wed, 5 Feb 2014 20:30:47 +0000 (-0500) Subject: Implement Gaussian quadrature and test it. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=6f237bfcd5890513cd390000c1ac8cdbdbaffb8c;p=numerical-analysis.git Implement Gaussian quadrature and test it. --- diff --git a/src/Integration/Gaussian.hs b/src/Integration/Gaussian.hs index 5d683f6..8fcca4f 100644 --- a/src/Integration/Gaussian.hs +++ b/src/Integration/Gaussian.hs @@ -5,25 +5,34 @@ -- | Gaussian quadrature over [-1, 1] using the Legendre polynomials. -- module Integration.Gaussian ( + gaussian, + gaussian', jacobi_matrix, nodes_and_weights ) where import Algebra.Absolute ( abs ) +import qualified Algebra.Absolute as Absolute ( C ) import qualified Algebra.Algebraic as Algebraic ( C ) +import qualified Algebra.Field as Field ( C ) import qualified Algebra.Ring as Ring ( C ) +import qualified Algebra.ToRational as ToRational ( C ) import Data.Vector.Fixed ( Arity, S ) import NumericPrelude hiding ( abs ) import Linear.Matrix ( Col, + Col10, Mat(..), + colzipwith, construct, + fromList, identity_matrix, matmap, row', transpose ) import Linear.QR ( eigenvectors_symmetric ) +import Normed ( Normed(..) ) -- | Compute the Jacobi matrix for the Legendre polynomials over @@ -37,7 +46,7 @@ import Linear.QR ( eigenvectors_symmetric ) -- -- Examples: -- --- >>> import Linear.Matrix ( Mat2, frobenius_norm, fromList ) +-- >>> import Linear.Matrix ( Mat2, frobenius_norm ) -- -- >>> let c = 1/(sqrt 3) -- >>> let expected = fromList [[0,c],[c, 0]] :: Mat2 Double @@ -75,7 +84,7 @@ jacobi_matrix = -- -- Examples: -- --- >>> import Linear.Matrix ( Col2, frobenius_norm, fromList ) +-- >>> import Linear.Matrix ( Col2, frobenius_norm ) -- -- >>> let (ns,ws) = nodes_and_weights 1000 :: (Col2 Double, Col2 Double) -- >>> let c = 1/(sqrt 3) @@ -117,3 +126,91 @@ nodes_and_weights iterations = weights_row = matmap (\x -> (fromInteger 2)*x^2) first_components weights = transpose $ weights_row + + +-- | Integrate a function over [-1,1] using Gaussian quadrature. This +-- is the \"simple\" version of the 'gaussian'' function; here the ten +-- nodes and weights are fixed. +-- +-- Examples: +-- +-- >>> let f x = x * (sin x) +-- >>> let actual = gaussian f :: Double +-- >>> let expected = 0.6023373578795136 +-- >>> abs (actual - expected) < 1e-12 +-- True +-- +gaussian :: forall a. + (Absolute.C a, Algebraic.C a, ToRational.C a, Field.C a) + => (a -> a) -- ^ The function to integrate. + -> a +gaussian f = + gaussian' f nodes weights + where + coerce = fromRational' . toRational + + nodes :: Col10 a + nodes = fromList $ map (map coerce) node_list + + node_list :: [[Double]] + node_list = [[-0.9739065285171726], + [-0.8650633666889886], + [-0.6794095682990235], + [-0.43339539412924943], + [-0.14887433898163027], + [0.14887433898163094], + [0.4333953941292481], + [0.6794095682990247], + [0.8650633666889846], + [0.9739065285171717]] + + weights :: Col10 a + weights = fromList $ map (map coerce) weight_list + + weight_list :: [[Double]] + weight_list = [[0.06667134430868775], + [0.14945134915057925], + [0.21908636251598282], + [0.26926671930999607], + [0.295524224714752], + [0.295524224714754], + [0.26926671930999635], + [0.219086362515982], + [0.14945134915058048], + [0.06667134430868814]] + + + +-- | Integrate a function over [-1,1] using Gaussian quadrature. The +-- nodes and the weights must be given (due to the design of the +-- library, the number of nodes/weights must be requested at the +-- type level so this function couldn't just compute e.g. @n@ of +-- them for you). +-- +-- The class constraints on @a@ could be loosened significantly if +-- we implemented column sum outside of the 1-norm. +-- +-- Examples: +-- +-- >>> import Linear.Matrix ( Col5 ) +-- +-- >>> let (ns, ws) = nodes_and_weights 100 :: (Col5 Double, Col5 Double) +-- >>> let f x = x * (sin x) +-- >>> let actual = gaussian' f ns ws +-- >>> let expected = 0.6023373578795136 +-- >>> abs (actual - expected) < 1e-8 +-- True +-- +gaussian' :: forall m a. + (Arity m, Absolute.C a, Algebraic.C a, ToRational.C a, Ring.C a) + => (a -> a) -- ^ The function @f@ to integrate. + -> Col (S m) a -- ^ Column matrix of nodes + -> Col (S m) a -- ^ Column matrix of weights + -> a +gaussian' f nodes weights = + -- The one norm is just the sum of the entries, which is what we + -- want. + norm_p (1::Int) weighted_values + where + function_values = matmap f nodes + weighted_values = colzipwith (*) weights function_values