From: Michael Orlitzky Date: Sat, 13 Mar 2021 19:17:20 +0000 (-0500) Subject: eja: don't allow creation of invalid RationalBasisEJAs. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=6d6af7c2560b2886cd47a2c8f3c0b9d1b843f649;p=sage.d.git eja: don't allow creation of invalid RationalBasisEJAs. Prior to this, a Cartesian product taken in the "wrong order" could result in a subclass of RationalBasisEJA that did not actually have a corresponding rational algebra. --- diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index 3361bfa..af4080b 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -1743,6 +1743,15 @@ class RationalBasisEJA(FiniteDimensionalEJA): check_field=False, check_axioms=False) + def rational_algebra(self): + # Using None as a flag here (rather than just assigning "self" + # to self._rational_algebra by default) feels a little bit + # more sane to me in a garbage-collected environment. + if self._rational_algebra is None: + return self + else: + return self._rational_algebra + @cached_method def _charpoly_coefficients(self): r""" @@ -1767,18 +1776,15 @@ class RationalBasisEJA(FiniteDimensionalEJA): Algebraic Real Field """ - if self._rational_algebra is None: - # There's no need to construct *another* algebra over the - # rationals if this one is already over the - # rationals. Likewise, if we never orthonormalized our - # basis, we might as well just use the given one. + if self.rational_algebra() is self: + # Bypass the hijinks if they won't benefit us. return super()._charpoly_coefficients() # Do the computation over the rationals. The answer will be # the same, because all we've done is a change of basis. # Then, change back from QQ to our real base ring a = ( a_i.change_ring(self.base_ring()) - for a_i in self._rational_algebra._charpoly_coefficients() ) + for a_i in self.rational_algebra()._charpoly_coefficients() ) # Otherwise, convert the coordinate variables back to the # deorthonormalized ones. @@ -2144,10 +2150,7 @@ class RealSymmetricEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA): from mjo.eja.eja_cache import real_symmetric_eja_coeffs a = real_symmetric_eja_coeffs(self) if a is not None: - if self._rational_algebra is None: - self._charpoly_coefficients.set_cache(a) - else: - self._rational_algebra._charpoly_coefficients.set_cache(a) + self.rational_algebra()._charpoly_coefficients.set_cache(a) @@ -2235,10 +2238,7 @@ class ComplexHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA): from mjo.eja.eja_cache import complex_hermitian_eja_coeffs a = complex_hermitian_eja_coeffs(self) if a is not None: - if self._rational_algebra is None: - self._charpoly_coefficients.set_cache(a) - else: - self._rational_algebra._charpoly_coefficients.set_cache(a) + self.rational_algebra()._charpoly_coefficients.set_cache(a) @staticmethod def _max_random_instance_size(max_dimension): @@ -2328,10 +2328,7 @@ class QuaternionHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA): from mjo.eja.eja_cache import quaternion_hermitian_eja_coeffs a = quaternion_hermitian_eja_coeffs(self) if a is not None: - if self._rational_algebra is None: - self._charpoly_coefficients.set_cache(a) - else: - self._rational_algebra._charpoly_coefficients.set_cache(a) + self.rational_algebra()._charpoly_coefficients.set_cache(a) @@ -2487,10 +2484,7 @@ class OctonionHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA): from mjo.eja.eja_cache import octonion_hermitian_eja_coeffs a = octonion_hermitian_eja_coeffs(self) if a is not None: - if self._rational_algebra is None: - self._charpoly_coefficients.set_cache(a) - else: - self._rational_algebra._charpoly_coefficients.set_cache(a) + self.rational_algebra()._charpoly_coefficients.set_cache(a) class AlbertEJA(OctonionHermitianEJA): @@ -3180,6 +3174,8 @@ class CartesianProductEJA(FiniteDimensionalEJA): self._inner_product_matrix = matrix.block_diagonal( [J._inner_product_matrix for J in factors] ) + self._inner_product_matrix._cache = {'hermitian': True} + self._inner_product_matrix.set_immutable() # Building the multiplication table is a bit more tricky # because we have to embed the entries of the factors' @@ -3424,9 +3420,9 @@ class RationalBasisCartesianProductEJA(CartesianProductEJA, SETUP:: - sage: from mjo.eja.eja_algebra import (HadamardEJA, + sage: from mjo.eja.eja_algebra import (FiniteDimensionalEJA, + ....: HadamardEJA, ....: JordanSpinEJA, - ....: OctonionHermitianEJA, ....: RealSymmetricEJA) EXAMPLES: @@ -3447,28 +3443,38 @@ class RationalBasisCartesianProductEJA(CartesianProductEJA, The ``cartesian_product()`` function only uses the first factor to decide where the result will live; thus we have to be careful to - check that all factors do indeed have a `_rational_algebra` member - before we try to access it:: - - sage: J1 = OctonionHermitianEJA(1) # no rational basis - sage: J2 = HadamardEJA(2) - sage: cartesian_product([J1,J2]) - Euclidean Jordan algebra of dimension 1 over Algebraic Real Field - (+) Euclidean Jordan algebra of dimension 2 over Algebraic Real Field - sage: cartesian_product([J2,J1]) - Euclidean Jordan algebra of dimension 2 over Algebraic Real Field - (+) Euclidean Jordan algebra of dimension 1 over Algebraic Real Field + check that all factors do indeed have a ``rational_algebra()`` method + before we construct an algebra that claims to have a rational basis:: + + sage: J1 = HadamardEJA(2) + sage: jp = lambda X,Y: X*Y + sage: ip = lambda X,Y: X[0,0]*Y[0,0] + sage: b1 = matrix(QQ, [[1]]) + sage: J2 = FiniteDimensionalEJA((b1,), jp, ip) + sage: cartesian_product([J2,J1]) # factor one not RationalBasisEJA + Euclidean Jordan algebra of dimension 1 over Algebraic Real + Field (+) Euclidean Jordan algebra of dimension 2 over Algebraic + Real Field + sage: cartesian_product([J1,J2]) # factor one is RationalBasisEJA + Traceback (most recent call last): + ... + ValueError: factor not a RationalBasisEJA """ def __init__(self, algebras, **kwargs): + if not all( hasattr(r, "rational_algebra") for r in algebras ): + raise ValueError("factor not a RationalBasisEJA") + CartesianProductEJA.__init__(self, algebras, **kwargs) - self._rational_algebra = None - if self.vector_space().base_field() is not QQ: - if all( hasattr(r, "_rational_algebra") for r in algebras ): - self._rational_algebra = cartesian_product([ - r._rational_algebra for r in algebras - ]) + @cached_method + def rational_algebra(self): + if self.base_ring() is QQ: + return self + + return cartesian_product([ + r.rational_algebra() for r in self.cartesian_factors() + ]) RationalBasisEJA.CartesianProduct = RationalBasisCartesianProductEJA