From: Michael Orlitzky Date: Tue, 10 Nov 2020 14:26:17 +0000 (-0500) Subject: eja: unindent a large "else" clause. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=5f522a9ac121a1229c0a9c62244b18ca67e65b12;p=sage.d.git eja: unindent a large "else" clause. --- diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index e288c6c..b9389da 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -1140,44 +1140,44 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra): Override the parent method with something that tries to compute over a faster (non-extension) field. """ - if self._basis_normalizers is None: - # We didn't normalize, so assume that the basis we started - # with had entries in a nice field. + if self._basis_normalizers is None or self.base_ring() is QQ: + # We didn't normalize, or the basis we started with had + # entries in a nice field already. Just compute the thing. return super(MatrixEuclideanJordanAlgebra, self)._charpoly_coefficients() - else: - basis = ( (b/n) for (b,n) in zip(self.natural_basis(), - self._basis_normalizers) ) - - # Do this over the rationals and convert back at the end. - # Only works because we know the entries of the basis are - # integers. The argument ``check_axioms=False`` is required - # because the trace inner-product method for this - # class is a stub and can't actually be checked. - J = MatrixEuclideanJordanAlgebra(QQ, - basis, - normalize_basis=False, - check_field=False, - check_axioms=False) - a = J._charpoly_coefficients() - - # Unfortunately, changing the basis does change the - # coefficients of the characteristic polynomial, but since - # these are really the coefficients of the "characteristic - # polynomial of" function, everything is still nice and - # unevaluated. It's therefore "obvious" how scaling the - # basis affects the coordinate variables X1, X2, et - # cetera. Scaling the first basis vector up by "n" adds a - # factor of 1/n into every "X1" term, for example. So here - # we simply undo the basis_normalizer scaling that we - # performed earlier. - # - # The a[0] access here is safe because trivial algebras - # won't have any basis normalizers and therefore won't - # make it to this "else" branch. - XS = a[0].parent().gens() - subs_dict = { XS[i]: self._basis_normalizers[i]*XS[i] - for i in range(len(XS)) } - return tuple( a_i.subs(subs_dict) for a_i in a ) + + basis = ( (b/n) for (b,n) in zip(self.natural_basis(), + self._basis_normalizers) ) + + # Do this over the rationals and convert back at the end. + # Only works because we know the entries of the basis are + # integers. The argument ``check_axioms=False`` is required + # because the trace inner-product method for this + # class is a stub and can't actually be checked. + J = MatrixEuclideanJordanAlgebra(QQ, + basis, + normalize_basis=False, + check_field=False, + check_axioms=False) + a = J._charpoly_coefficients() + + # Unfortunately, changing the basis does change the + # coefficients of the characteristic polynomial, but since + # these are really the coefficients of the "characteristic + # polynomial of" function, everything is still nice and + # unevaluated. It's therefore "obvious" how scaling the + # basis affects the coordinate variables X1, X2, et + # cetera. Scaling the first basis vector up by "n" adds a + # factor of 1/n into every "X1" term, for example. So here + # we simply undo the basis_normalizer scaling that we + # performed earlier. + # + # The a[0] access here is safe because trivial algebras + # won't have any basis normalizers and therefore won't + # make it to this "else" branch. + XS = a[0].parent().gens() + subs_dict = { XS[i]: self._basis_normalizers[i]*XS[i] + for i in range(len(XS)) } + return tuple( a_i.subs(subs_dict) for a_i in a ) @staticmethod