From: Michael Orlitzky Date: Fri, 26 Jul 2019 23:57:04 +0000 (-0400) Subject: eja: finally get scalar-morphism multiplication working with the new homsets. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=5d3a706499044bcf5e8fa91074803aadac53c362;p=sage.d.git eja: finally get scalar-morphism multiplication working with the new homsets. --- diff --git a/mjo/eja/euclidean_jordan_algebra.py b/mjo/eja/euclidean_jordan_algebra.py index 848fc57..cc356dc 100644 --- a/mjo/eja/euclidean_jordan_algebra.py +++ b/mjo/eja/euclidean_jordan_algebra.py @@ -152,7 +152,7 @@ class FiniteDimensionalEuclideanJordanAlgebraMorphism(FiniteDimensionalAlgebraMo check=False) - def _invert_(self): + def __invert__(self): """ EXAMPLES:: @@ -190,25 +190,48 @@ class FiniteDimensionalEuclideanJordanAlgebraMorphism(FiniteDimensionalAlgebraMo return FiniteDimensionalEuclideanJordanAlgebraMorphism(self.parent(), A.inverse()) - def _lmul_(self, other): + def _lmul_(self, right): """ Compose two EJA morphisms using multiplicative notation. EXAMPLES:: - sage: J = RealSymmetricEJA(3) + sage: J = RealSymmetricEJA(2) sage: x = J.zero() sage: y = J.one() sage: x.operator() * y.operator() - Morphism from Euclidean Jordan algebra of degree 6 over Rational - Field to Euclidean Jordan algebra of degree 6 over Rational Field + Morphism from Euclidean Jordan algebra of degree 3 over Rational + Field to Euclidean Jordan algebra of degree 3 over Rational Field + given by matrix + [0 0 0] + [0 0 0] + [0 0 0] + + :: + + sage: J = RealSymmetricEJA(2) + sage: x = J.linear_combination(zip(range(len(J.gens())), J.gens())) + sage: x.operator() + Morphism from Euclidean Jordan algebra of degree 3 over Rational + Field to Euclidean Jordan algebra of degree 3 over Rational Field + given by matrix + [ 0 1 0] + [1/2 1 1/2] + [ 0 1 2] + sage: 2*x.operator() + Morphism from Euclidean Jordan algebra of degree 3 over Rational + Field to Euclidean Jordan algebra of degree 3 over Rational Field given by matrix - [0 0 0 0 0 0] - [0 0 0 0 0 0] - [0 0 0 0 0 0] - [0 0 0 0 0 0] - [0 0 0 0 0 0] - [0 0 0 0 0 0] + [0 2 0] + [1 2 1] + [0 2 4] + sage: x.operator()*2 + Morphism from Euclidean Jordan algebra of degree 3 over Rational + Field to Euclidean Jordan algebra of degree 3 over Rational Field + given by matrix + [0 2 0] + [1 2 1] + [0 2 4] TESTS:: @@ -220,12 +243,21 @@ class FiniteDimensionalEuclideanJordanAlgebraMorphism(FiniteDimensionalAlgebraMo True """ - if not other.codomain() is self.domain(): + try: + # I think the morphism classes break the coercion framework + # somewhere along the way, so we have to do this ourselves. + right = self.parent().coerce(right) + except: + pass + + if not right.codomain() is self.domain(): raise ValueError("(co)domains must agree for composition") return FiniteDimensionalEuclideanJordanAlgebraMorphism( - self.parent(), - self.matrix()*other.matrix() ) + self.parent(), + self.matrix()*right.matrix() ) + + __mul__ = _lmul_ def _neg_(self):