From: Michael Orlitzky Date: Sun, 8 May 2011 20:34:07 +0000 (-0400) Subject: Add a bunch of documentation. X-Git-Tag: 0.0.1~305 X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=58cf11569acb270995d2de924dda03ef526647e2;p=spline3.git Add a bunch of documentation. --- diff --git a/src/Assertions.hs b/src/Assertions.hs index 8efd123..44d793b 100644 --- a/src/Assertions.hs +++ b/src/Assertions.hs @@ -1,3 +1,6 @@ +-- | The Assertions module contains assertions for use in HUnit +-- tests. They primarily fill the need for an equality test that +-- works with floating point numbers. module Assertions where @@ -8,19 +11,18 @@ import Comparisons import Point -- | An HUnit assertion that wraps the almost_equals function. Stolen --- from the definition of assertEqual in Test/HUnit/Base.hs. +-- from the definition of 'assertEqual' in Test/HUnit/Base.hs. assertAlmostEqual :: String -> Double -> Double -> Assertion assertAlmostEqual preface expected actual = unless (actual ~= expected) (assertFailure msg) - where msg = (if null preface then "" else preface ++ "\n") ++ - "expected: " ++ show expected ++ "\n but got: " ++ show actual + where msg = (if null preface then "" else preface ++ "\n") ++ + "expected: " ++ show expected ++ "\n but got: " ++ show actual -- | An HUnit assertion that wraps the is_close function. Stolen --- from the definition of assertEqual in Test/HUnit/Base.hs. +-- from the definition of 'assertEqual' in Test/HUnit/Base.hs. assertClose :: String -> Point -> Point -> Assertion assertClose preface expected actual = unless (actual `is_close` expected) (assertFailure msg) - where msg = (if null preface then "" else preface ++ "\n") ++ - "expected: " ++ show expected ++ "\n but got: " ++ show actual - + where msg = (if null preface then "" else preface ++ "\n") ++ + "expected: " ++ show expected ++ "\n but got: " ++ show actual diff --git a/src/Cardinal.hs b/src/Cardinal.hs index 9a5d025..b911003 100644 --- a/src/Cardinal.hs +++ b/src/Cardinal.hs @@ -46,7 +46,7 @@ data Cardinal = F -- ^ Front deriving (Show, Eq) --- | By making Cardinal an instance of Num, we gain the ability to +-- | By making Cardinal an instance of 'Num', we gain the ability to -- add, subtract, and multiply directions. The results of these -- operations are never actually calculated; the types just keep -- track of which operations were performed in which order. diff --git a/src/Comparisons.hs b/src/Comparisons.hs index 506ebab..4bf4ceb 100644 --- a/src/Comparisons.hs +++ b/src/Comparisons.hs @@ -1,3 +1,4 @@ +-- | Functions for comparing 'Double' values. module Comparisons where @@ -22,7 +23,7 @@ very_positive :: Double -> Bool very_positive x = x - epsilon > 0 --- | Takes a list of Doubles and returns the ones which are not very +-- | Takes a list of 'Double' and returns the ones which are not very -- positive. non_very_positive_entries :: [Double] -> [Double] non_very_positive_entries = filter (not . very_positive) diff --git a/src/Cube.hs b/src/Cube.hs index b44f007..cfe0e60 100644 --- a/src/Cube.hs +++ b/src/Cube.hs @@ -33,6 +33,7 @@ instance Show Cube where (show (i c)) ++ "," ++ (show (j c)) ++ "," ++ (show (k c)) +-- | Returns an empty 'Cube'. empty_cube :: Cube empty_cube = Cube 0 0 0 0 empty_values @@ -87,7 +88,7 @@ zmax c = (2*k' + 1)*delta / 2 instance ThreeDimensional Cube where -- | The center of Cube_ijk coincides with v_ijk at - -- (ih, jh, kh). See Sorokina and Zeilfelder, p. 76. + -- (ih, jh, kh). See Sorokina and Zeilfelder, p. 76. center c = (x, y, z) where delta = h c @@ -98,6 +99,8 @@ instance ThreeDimensional Cube where y = delta * j' z = delta * k' + -- | It's easy to tell if a point is within a cube; just make sure + -- that it falls on the proper side of each of the cube's faces. contains_point c p | (x_coord p) < (xmin c) = False | (x_coord p) > (xmax c) = False diff --git a/src/Face.hs b/src/Face.hs index 3f1c223..96848cd 100644 --- a/src/Face.hs +++ b/src/Face.hs @@ -1,3 +1,5 @@ +-- | The Face module just contains the definition of the 'Face' data +-- type and its two typeclass instances. module Face where @@ -17,7 +19,16 @@ instance Show Face where " v2: " ++ (show (v2 f)) ++ "\n" ++ " v3: " ++ (show (v3 f)) ++ "\n" +-- | The 'Face' type is an instance of 'ThreeDimensional' so that we +-- can call the 'center' function on it. This is useful because the +-- center of a face is always a vertex of a tetrahedron. instance ThreeDimensional Face where + -- | Since a face is square, we can just average the four vertices + -- to find the center. center f = ((v0 f) + (v1 f) + (v2 f) + (v3 f)) `scale` (1/4) - -- Too lazy to implement this right now. + + -- | It's possible to implement this, but it hasn't been done + -- yet. A face will contain a point if the point lies in the same + -- plane as the vertices of the face, and if it falls on the + -- correct side of the four sides of the face. contains_point _ _ = False diff --git a/src/FunctionValues.hs b/src/FunctionValues.hs index e8bdcb8..28f596b 100644 --- a/src/FunctionValues.hs +++ b/src/FunctionValues.hs @@ -1,3 +1,5 @@ +-- | The FunctionValues module contains the 'FunctionValues' type and +-- the functions used to manipulate it. module FunctionValues where @@ -5,6 +7,9 @@ import Prelude hiding (LT) import Cardinal +-- | The FunctionValues type represents the value of our function f at +-- the 27 points surrounding the center of a cube. Each value of f +-- can be accessed by the name of its direction. data FunctionValues = FunctionValues { front :: Double, back :: Double, @@ -35,10 +40,17 @@ data FunctionValues = interior :: Double } deriving (Eq, Show) +-- | Return a 'FunctionValues' with a bunch of zeros for data points. empty_values :: FunctionValues empty_values = FunctionValues 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +-- | The eval function is where the magic happens for the +-- FunctionValues type. Given a 'Cardinal' direction and a +-- 'FunctionValues' object, eval will return the value of the +-- function f in that 'Cardinal' direction. Note that 'Cardinal' can +-- be a composite type; eval is what performs the "arithmetic" on +-- 'Cardinal' directions. eval :: FunctionValues -> Cardinal -> Double eval f F = front f eval f B = back f @@ -73,6 +85,9 @@ eval f (Difference x y) = (eval f x) - (eval f y) eval f (Product x y) = (eval f x) * (eval f y) eval f (Quotient x y) = (eval f x) / (eval f y) +-- | Takes a three-dimensional list of 'Double' and a set of 3D +-- coordinates (i,j,k), and returns the value at (i,j,k) in the +-- supplied list. If there is no such value, zero is returned. value_at :: [[[Double]]] -> Int -> Int -> Int -> Double value_at values i j k | i < 0 = 0 @@ -83,6 +98,10 @@ value_at values i j k | length ((values !! k) !! j) <= i = 0 | otherwise = ((values !! k) !! j) !! i + +-- | Given a three-dimensional list of 'Double' and a set of 3D +-- coordinates (i,j,k), constructs and returns the 'FunctionValues' +-- object centered at (i,j,k) make_values :: [[[Double]]] -> Int -> Int -> Int -> FunctionValues make_values values i j k = empty_values { front = value_at values (i-1) j k, @@ -113,6 +132,10 @@ make_values values i j k = back_right_top = value_at values (i+1) (j+1) (k+1), interior = value_at values i j k } +-- | Takes a 'FunctionValues' and a function that transforms one +-- 'Cardinal' to another (called a rotation). Then it applies the +-- rotation to each element of the 'FunctionValues' object, and +-- returns the result. rotate :: FunctionValues -> (Cardinal -> Cardinal) -> FunctionValues rotate fv rotation = FunctionValues { front = eval fv (rotation F), diff --git a/src/Grid.hs b/src/Grid.hs index 3ca66ca..4b75185 100644 --- a/src/Grid.hs +++ b/src/Grid.hs @@ -29,9 +29,8 @@ empty_grid :: Grid empty_grid = Grid 1 [[[]]] - --- This is how we do a 'for' loop in Haskell. --- No, seriously. +-- | Returns a three-dimensional list of cubes centered on the grid +-- points of g with the appropriate 'FunctionValues'. cubes :: Grid -> [[[Cube]]] cubes g | fvs == [[[]]] = [[[]]] @@ -49,7 +48,7 @@ cubes g -- | Takes a grid and a position as an argument and returns the cube -- centered on that position. If there is no cube there (i.e. the --- position is outside of the grid), it will return Nothing. +-- position is outside of the grid), it will return 'Nothing'. cube_at :: Grid -> Int -> Int -> Int -> Maybe Cube cube_at g i j k | i < 0 = Nothing diff --git a/src/Point.hs b/src/Point.hs index 5d7954c..94bcd70 100644 --- a/src/Point.hs +++ b/src/Point.hs @@ -50,10 +50,12 @@ instance Num Point where fromInteger n = (fromInteger n, fromInteger n, fromInteger n) +-- | Scale a point by a constant. scale :: Point -> Double -> Point scale (x, y, z) d = (x*d, y*d, z*d) +-- | Returns the distance between p1 and p2. distance :: Point -> Point -> Double distance p1 p2 = sqrt $ (x2 - x1)^(2::Int) + (y2 - y1)^(2::Int) + (z2 - z1)^(2::Int) @@ -66,5 +68,6 @@ distance p1 p2 = z2 = z_coord p2 +-- | Returns 'True' if p1 'is_close' to p2, 'False' otherwise. is_close :: Point -> Point -> Bool is_close p1 p2 = (distance p1 p2) ~= 0 diff --git a/src/RealFunction.hs b/src/RealFunction.hs index 834c27a..6a557a9 100644 --- a/src/RealFunction.hs +++ b/src/RealFunction.hs @@ -6,12 +6,22 @@ where type RealFunction a = (a -> Double) + +-- | A 'Show' instance is required to be a 'Num' instance. instance Show (RealFunction a) where - show _ = "Real Function" + -- | There is nothing of value that we can display about a + -- function, so simply print its type. + show _ = "RealFunction" + +-- | An 'Eq' instance is required to be a 'Num' instance. instance Eq (RealFunction a) where + -- | Nothing else makes sense here; always return 'False'. _ == _ = False + +-- | The 'Num' instance for RealFunction allows us to perform +-- arithmetic on functions in the usual way. instance Num (RealFunction a) where (f1 + f2) x = (f1 x) + (f2 x) (f1 - f2) x = (f1 x) - (f2 x) @@ -22,12 +32,14 @@ instance Num (RealFunction a) where fromInteger i _ = fromInteger i --- Takes a constant, and a function as arguments. Returns a new --- function representing the original function times the constant. +-- | Takes a constant, and a function as arguments. Returns a new +-- function representing the original function times the constant. cmult :: Double -> (RealFunction a) -> (RealFunction a) cmult coeff f = (*coeff) . f --- Takes a function f and an exponent n. Returns a new function, f^n. + +-- | Takes a function f and an exponent n. Returns a new function, +-- f^n. fexp :: (RealFunction a) -> Int -> (RealFunction a) fexp f n | n == 0 = (\_ -> 1) diff --git a/src/Tetrahedron.hs b/src/Tetrahedron.hs index 85ac4a3..9d90f71 100644 --- a/src/Tetrahedron.hs +++ b/src/Tetrahedron.hs @@ -217,8 +217,8 @@ vol_matrix t = (4><4) z3 = z_coord (v2 t) z4 = z_coord (v3 t) --- Computed using the formula from Lai & Schumaker, Definition 15.4, --- page 436. +-- | Computed using the formula from Lai & Schumaker, Definition 15.4, +-- page 436. volume :: Tetrahedron -> Double volume t | (v0 t) == (v1 t) = 0 @@ -230,21 +230,28 @@ volume t | otherwise = (1/6)*(det (vol_matrix t)) +-- | The barycentric coordinates of a point with respect to v0. b0 :: Tetrahedron -> (RealFunction Point) b0 t point = (volume inner_tetrahedron) / (volume t) where inner_tetrahedron = t { v0 = point } + +-- | The barycentric coordinates of a point with respect to v1. b1 :: Tetrahedron -> (RealFunction Point) b1 t point = (volume inner_tetrahedron) / (volume t) where inner_tetrahedron = t { v1 = point } + +-- | The barycentric coordinates of a point with respect to v2. b2 :: Tetrahedron -> (RealFunction Point) b2 t point = (volume inner_tetrahedron) / (volume t) where inner_tetrahedron = t { v2 = point } + +-- | The barycentric coordinates of a point with respect to v3. b3 :: Tetrahedron -> (RealFunction Point) b3 t point = (volume inner_tetrahedron) / (volume t) where