From: Michael Orlitzky Date: Sun, 2 Oct 2011 21:17:44 +0000 (-0400) Subject: Implement my own 4x4 determinant. X-Git-Tag: 0.0.1~116 X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=525f4e76394c74e5a6f6bcdc7fb50d0dc2b9ec2d;p=spline3.git Implement my own 4x4 determinant. --- diff --git a/src/Tetrahedron.hs b/src/Tetrahedron.hs index 613b863..e84b091 100644 --- a/src/Tetrahedron.hs +++ b/src/Tetrahedron.hs @@ -17,7 +17,7 @@ import qualified Data.Vector as V ( snoc, sum ) -import Numeric.LinearAlgebra hiding (i, scale) + import Prelude hiding (LT) import Test.Framework (Test, testGroup) import Test.Framework.Providers.HUnit (testCase) @@ -281,31 +281,39 @@ c _ _ _ _ _ = error "coefficient index out of bounds" --- | The matrix used in the tetrahedron volume calculation as given in --- Lai & Schumaker, Definition 15.4, page 436. -vol_matrix :: Tetrahedron -> Matrix Double -vol_matrix t = (4><4) - [1, 1, 1, 1, - x1, x2, x3, x4, - y1, y2, y3, y4, - z1, z2, z3, z4 ] - where - (x1, y1, z1) = v0 t - (x2, y2, z2) = v1 t - (x3, y3, z3) = v2 t - (x4, y4, z4) = v3 t +det :: Point -> Point -> Point -> Point -> Double +det p0 p1 p2 p3 = +-- Both of these results are just copy/pasted from Sage. One of them +-- might be more numerically stable, faster, or both. +-- +-- x1*y2*z4 - x1*y2*z3 + x1*y3*z2 - x1*y3*z4 - x1*y4*z2 + x1*y4*z3 + +-- x2*y1*z3 - x2*y1*z4 - x2*y3*z1 + x2*y3*z4 + +-- x2*y4*z1 - x2*y4*z3 - x3*y1*z2 + x3*y1*z4 + x3*y2*z1 - x3*y2*z4 - x3*y4*z1 + +-- x3*y4*z2 + x4*y1*z2 - x4*y1*z3 - x4*y2*z1 + x4*y2*z3 + x4*y3*z1 - x4*y3*z2 + -((x2 - x3)*y1 - (x1 - x3)*y2 + (x1 - x2)*y3)*z4 + ((x2 - x4)*y1 - (x1 - x4)*y2 + (x1 - x2)*y4)*z3 + ((x3 - x4)*y2 - (x2 - x4)*y3 + (x2 - x3)*y4)*z1 - ((x3 - x4)*y1 - (x1 - x4)*y3 + (x1 - x3)*y4)*z2 + where + (x1, y1, z1) = p0 + (x2, y2, z2) = p1 + (x3, y3, z3) = p2 + (x4, y4, z4) = p3 + -- | Computed using the formula from Lai & Schumaker, Definition 15.4, -- page 436. volume :: Tetrahedron -> Double volume t - | (v0 t) == (v1 t) = 0 - | (v0 t) == (v2 t) = 0 - | (v0 t) == (v3 t) = 0 - | (v1 t) == (v2 t) = 0 - | (v1 t) == (v3 t) = 0 - | (v2 t) == (v3 t) = 0 - | otherwise = (1/6)*(det (vol_matrix t)) + | v0' == v1' = 0 + | v0' == v2' = 0 + | v0' == v3' = 0 + | v1' == v2' = 0 + | v1' == v3' = 0 + | v2' == v3' = 0 + | otherwise = (1/6)*(det v0' v1' v2' v3') + where + v0' = v0 t + v1' = v1 t + v2' = v2 t + v3' = v3 t -- | The barycentric coordinates of a point with respect to v0.