From: Michael Orlitzky Date: Wed, 12 Feb 2014 01:14:47 +0000 (-0500) Subject: Use a better implementation of backwards_substitute. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=51618d964642ed3e3dcc18c2fef039e3d356b42b;p=numerical-analysis.git Use a better implementation of backwards_substitute. --- diff --git a/src/Linear/System.hs b/src/Linear/System.hs index 82e1e4b..6d46a13 100644 --- a/src/Linear/System.hs +++ b/src/Linear/System.hs @@ -11,21 +11,18 @@ where import qualified Algebra.Algebraic as Algebraic ( C ) import Data.Vector.Fixed ( Arity, S ) import NumericPrelude hiding ( (*), abs ) -import qualified NumericPrelude as NP ( (*) ) import qualified Algebra.Field as Field ( C ) import Linear.Matrix ( Col, Mat(..), - (!!!), cholesky, - construct, diagonal, dot, ifoldl2, + ifoldr2, is_lower_triangular, is_upper_triangular, - ncols, row, set_idx, zip2, @@ -109,7 +106,9 @@ forward_substitute matrix b -- | Solve the system m*x = b, where m is upper-triangular. Will --- probably crash if m is non-singular. The result is the vector x. +-- probably crash if m is non-singular. The result is the vector +-- x. The implementation is identical to 'forward_substitute' except +-- with a right-fold. -- -- Examples: -- @@ -131,34 +130,19 @@ backward_substitute :: forall m a. (Eq a, Field.C a, Arity m) => Mat (S m) (S m) a -> Col (S m) a -> Col (S m) a -backward_substitute m' b' - | not (is_upper_triangular m') = +backward_substitute matrix b + | not (is_upper_triangular matrix) = error "backward substitution on non-upper-triangular matrix" - | otherwise = x' - where - x' = construct lambda - - -- Convenient accessor for the elements of b'. - b :: Int -> a - b k = b' !!! (k, 0) - - -- Convenient accessor for the elements of m'. - m :: Int -> Int -> a - m i j = m' !!! (i, j) - - -- Convenient accessor for the elements of x'. - x :: Int -> a - x k = x' !!! (k, 0) + | otherwise = ifoldr2 f zero pairs + where + -- Pairs (m_ii, b_i) needed at each step. + pairs :: Col (S m) (a,a) + pairs = zip2 (diagonal matrix) b - -- The second argument to lambda should always be zero here, so we - -- ignore it. - lambda :: Int -> Int -> a - lambda k _ - | k == n = (b k) / (m k k) - | otherwise = ((b k) - sum [ (m k j) NP.* (x j) | - j <- [k+1..n] ]) / (m k k) - where - n = (ncols m') - 1 + f :: Int -> Int -> Col (S m) a -> (a, a) -> Col (S m) a + f i _ x (mii, bi) = set_idx x (i,0) newval + where + newval = (bi - (x `dot` (transpose $ row matrix i))) / mii -- | Solve the linear system m*x = b where m is positive definite.