From: Michael Orlitzky Date: Sat, 6 Mar 2021 16:11:38 +0000 (-0500) Subject: eja: fix gram_schmidt doctests. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=5154ccb39a8fd2d69330ae440bd6d92a12f67e7c;p=sage.d.git eja: fix gram_schmidt doctests. --- diff --git a/mjo/eja/eja_utils.py b/mjo/eja/eja_utils.py index d4e9990..0b2d2a3 100644 --- a/mjo/eja/eja_utils.py +++ b/mjo/eja/eja_utils.py @@ -129,8 +129,8 @@ def gram_schmidt(v, inner_product=None): """ Perform Gram-Schmidt on the list ``v`` which are assumed to be vectors over the same base ring. Returns a list of orthonormalized - vectors over the smallest extention ring containing the necessary - roots. + vectors over the same base ring, which means that your base ring + needs to contain the appropriate roots. SETUP:: @@ -138,11 +138,21 @@ def gram_schmidt(v, inner_product=None): EXAMPLES: + If you start with an orthonormal set, you get it back. We can use + the rationals here because we don't need any square roots:: + + sage: v1 = vector(QQ, (1,0,0)) + sage: v2 = vector(QQ, (0,1,0)) + sage: v3 = vector(QQ, (0,0,1)) + sage: v = [v1,v2,v3] + sage: gram_schmidt(v) == v + True + The usual inner-product and norm are default:: - sage: v1 = vector(QQ,(1,2,3)) - sage: v2 = vector(QQ,(1,-1,6)) - sage: v3 = vector(QQ,(2,1,-1)) + sage: v1 = vector(AA,(1,2,3)) + sage: v2 = vector(AA,(1,-1,6)) + sage: v3 = vector(AA,(2,1,-1)) sage: v = [v1,v2,v3] sage: u = gram_schmidt(v) sage: all( u_i.inner_product(u_i).sqrt() == 1 for u_i in u ) @@ -159,11 +169,11 @@ def gram_schmidt(v, inner_product=None): orthonormal with respect to that (and not the usual inner product):: - sage: v1 = vector(QQ,(1,2,3)) - sage: v2 = vector(QQ,(1,-1,6)) - sage: v3 = vector(QQ,(2,1,-1)) + sage: v1 = vector(AA,(1,2,3)) + sage: v2 = vector(AA,(1,-1,6)) + sage: v3 = vector(AA,(2,1,-1)) sage: v = [v1,v2,v3] - sage: B = matrix(QQ, [ [6, 4, 2], + sage: B = matrix(AA, [ [6, 4, 2], ....: [4, 5, 4], ....: [2, 4, 9] ]) sage: ip = lambda x,y: (B*x).inner_product(y) @@ -181,18 +191,18 @@ def gram_schmidt(v, inner_product=None): This Gram-Schmidt routine can be used on matrices as well, so long as an appropriate inner-product is provided:: - sage: E11 = matrix(QQ, [ [1,0], + sage: E11 = matrix(AA, [ [1,0], ....: [0,0] ]) - sage: E12 = matrix(QQ, [ [0,1], + sage: E12 = matrix(AA, [ [0,1], ....: [1,0] ]) - sage: E22 = matrix(QQ, [ [0,0], + sage: E22 = matrix(AA, [ [0,0], ....: [0,1] ]) - sage: I = matrix.identity(QQ,2) + sage: I = matrix.identity(AA,2) sage: trace_ip = lambda X,Y: (X*Y).trace() sage: gram_schmidt([E11,E12,I,E22], inner_product=trace_ip) [ - [1 0] [ 0 1/2*sqrt(2)] [0 0] - [0 0], [1/2*sqrt(2) 0], [0 1] + [1 0] [ 0 0.7071067811865475?] [0 0] + [0 0], [0.7071067811865475? 0], [0 1] ] It even works on Cartesian product spaces whose factors are vector @@ -221,9 +231,9 @@ def gram_schmidt(v, inner_product=None): Ensure that zero vectors don't get in the way:: - sage: v1 = vector(QQ,(1,2,3)) - sage: v2 = vector(QQ,(1,-1,6)) - sage: v3 = vector(QQ,(0,0,0)) + sage: v1 = vector(AA,(1,2,3)) + sage: v2 = vector(AA,(1,-1,6)) + sage: v3 = vector(AA,(0,0,0)) sage: v = [v1,v2,v3] sage: len(gram_schmidt(v)) == 2 True