From: Michael Orlitzky Date: Wed, 26 Jan 2022 12:32:17 +0000 (-0500) Subject: eja: rename MatrixEJA to HermitianMatrixEJA. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=503a7caa18ec01aeffd26a24315d4b373365ca67;p=sage.d.git eja: rename MatrixEJA to HermitianMatrixEJA. There are also algebras of skew-Hermitian matrices, so the name was not great. --- diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index 1ccbf2e..b76c5fc 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -1929,11 +1929,11 @@ class ConcreteEJA(FiniteDimensionalEJA): return eja_class.random_instance(max_dimension, *args, **kwargs) -class MatrixEJA(FiniteDimensionalEJA): +class HermitianMatrixEJA(FiniteDimensionalEJA): @staticmethod def _denormalized_basis(A): """ - Returns a basis for the space of complex Hermitian n-by-n matrices. + Returns a basis for the given Hermitian matrix space. Why do we embed these? Basically, because all of numerical linear algebra assumes that you're working with vectors consisting of `n` @@ -1946,13 +1946,13 @@ class MatrixEJA(FiniteDimensionalEJA): sage: from mjo.hurwitz import (ComplexMatrixAlgebra, ....: QuaternionMatrixAlgebra, ....: OctonionMatrixAlgebra) - sage: from mjo.eja.eja_algebra import MatrixEJA + sage: from mjo.eja.eja_algebra import HermitianMatrixEJA TESTS:: sage: n = ZZ.random_element(1,5) sage: A = MatrixSpace(QQ, n) - sage: B = MatrixEJA._denormalized_basis(A) + sage: B = HermitianMatrixEJA._denormalized_basis(A) sage: all( M.is_hermitian() for M in B) True @@ -1960,7 +1960,7 @@ class MatrixEJA(FiniteDimensionalEJA): sage: n = ZZ.random_element(1,5) sage: A = ComplexMatrixAlgebra(n, scalars=QQ) - sage: B = MatrixEJA._denormalized_basis(A) + sage: B = HermitianMatrixEJA._denormalized_basis(A) sage: all( M.is_hermitian() for M in B) True @@ -1968,7 +1968,7 @@ class MatrixEJA(FiniteDimensionalEJA): sage: n = ZZ.random_element(1,5) sage: A = QuaternionMatrixAlgebra(n, scalars=QQ) - sage: B = MatrixEJA._denormalized_basis(A) + sage: B = HermitianMatrixEJA._denormalized_basis(A) sage: all( M.is_hermitian() for M in B ) True @@ -1976,7 +1976,7 @@ class MatrixEJA(FiniteDimensionalEJA): sage: n = ZZ.random_element(1,5) sage: A = OctonionMatrixAlgebra(n, scalars=QQ) - sage: B = MatrixEJA._denormalized_basis(A) + sage: B = HermitianMatrixEJA._denormalized_basis(A) sage: all( M.is_hermitian() for M in B ) True @@ -2081,7 +2081,7 @@ class MatrixEJA(FiniteDimensionalEJA): self.rank.set_cache(matrix_space.nrows()) self.one.set_cache( self(matrix_space.one()) ) -class RealSymmetricEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA): +class RealSymmetricEJA(HermitianMatrixEJA, RationalBasisEJA, ConcreteEJA): """ The rank-n simple EJA consisting of real symmetric n-by-n matrices, the usual symmetric Jordan product, and the trace inner @@ -2173,7 +2173,7 @@ class RealSymmetricEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA): -class ComplexHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA): +class ComplexHermitianEJA(HermitianMatrixEJA, RationalBasisEJA, ConcreteEJA): """ The rank-n simple EJA consisting of complex Hermitian n-by-n matrices over the real numbers, the usual symmetric Jordan product, @@ -2272,7 +2272,7 @@ class ComplexHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA): return cls(n, **kwargs) -class QuaternionHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA): +class QuaternionHermitianEJA(HermitianMatrixEJA, RationalBasisEJA, ConcreteEJA): r""" The rank-n simple EJA consisting of self-adjoint n-by-n quaternion matrices, the usual symmetric Jordan product, and the @@ -2360,7 +2360,7 @@ class QuaternionHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA): n = ZZ.random_element(max_size + 1) return cls(n, **kwargs) -class OctonionHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA): +class OctonionHermitianEJA(HermitianMatrixEJA, RationalBasisEJA, ConcreteEJA): r""" SETUP::