From: Michael Orlitzky Date: Fri, 20 Jan 2023 23:30:02 +0000 (-0500) Subject: mjo-cone.tex: add the strictly positive orthant, \Rnplusplus. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=4d76b8a320e183fc1fcae6f0c55d7af96806a00b;p=mjotex.git mjo-cone.tex: add the strictly positive orthant, \Rnplusplus. --- diff --git a/examples.tex b/examples.tex index f23b9e9..e70e0e1 100644 --- a/examples.tex +++ b/examples.tex @@ -139,12 +139,12 @@ \begin{section}{Cone} The dual cone of $K$ is $\dual{K}$. Some familiar symmetric cones - are $\Rnplus$, $\Lnplus$, $\Snplus$, and $\Hnplus$. If cones - $K_{1}$ and $K_{2}$ are given, we can define $\posops{K_{1}}$, - $\posops[K_{2}]{K_{1}}$, $\Sof{K_{1}}$, $\Zof{K_{1}}$, - $\LL{K_{1}}$, and $\lyapunovrank{K_{1}}$. We can also define $x - \gecone_{K} y$, $x \gtcone_{K} y$, $x \lecone_{K} y$, and $x - \ltcone_{K} y$ with respect to a cone $K$. + are $\Rnplus$, $\Rnplusplus$, $\Lnplus$, $\Snplus$, and $\Hnplus$. + If cones $K_{1}$ and $K_{2}$ are given, we can define + $\posops{K_{1}}$, $\posops[K_{2}]{K_{1}}$, $\Sof{K_{1}}$, + $\Zof{K_{1}}$, $\LL{K_{1}}$, and $\lyapunovrank{K_{1}}$. We can + also define $x \gecone_{K} y$, $x \gtcone_{K} y$, $x \lecone_{K} + y$, and $x \ltcone_{K} y$ with respect to a cone $K$. \end{section} \begin{section}{Convex} diff --git a/mjo-cone.tex b/mjo-cone.tex index 78e8741..00a1309 100644 --- a/mjo-cone.tex +++ b/mjo-cone.tex @@ -23,8 +23,10 @@ % Common cones. % -% The nonnegative orthant in the given number of dimensions. +% The nonnegative and strictly positive orthants in the given number +% of dimensions. \newcommand*{\Rnplus}[1][n]{ \Rn[#1]_{+} } +\newcommand*{\Rnplusplus}[1][n]{ \Rn[#1]_{++} } % The Lorentz ``ice-cream'' cone in the given number of dimensions. \newcommand*{\Lnplus}[1][n]{ \mathcal{L}^{{#1}}_{+} }