From: Michael Orlitzky Date: Tue, 11 Oct 2016 14:05:58 +0000 (-0400) Subject: Add two more tests for nonnegative scaling factors. X-Git-Tag: 0.1.0~164 X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=429a352cedb7bf3e6e717015982834eac1d8ea14;p=dunshire.git Add two more tests for nonnegative scaling factors. --- diff --git a/src/dunshire/games.py b/src/dunshire/games.py index 8383a96..f3d8100 100644 --- a/src/dunshire/games.py +++ b/src/dunshire/games.py @@ -568,3 +568,59 @@ class SymmetricLinearGameTest(TestCase): L = [[1,-2],[-2,1]] G = SymmetricLinearGame(L, K, e1, e2) self.assertTrue(G.solution().game_value() < -options.ABS_TOL) + + + def test_nonnegative_scaling_orthant(self): + """ + Test that scaling ``L`` by a nonnegative number scales the value + of the game by the same number. Use the nonnegative orthant as + our cone. + """ + ambient_dim = randint(1, 10) + K = NonnegativeOrthant(ambient_dim) + e1 = [uniform(0.1, 10) for idx in range(K.dimension())] + e2 = [uniform(0.1, 10) for idx in range(K.dimension())] + L = matrix([[uniform(-10, 10) for i in range(K.dimension())] + for j in range(K.dimension())]) + G1 = SymmetricLinearGame(L, K, e1, e2) + value1 = G1.solution().game_value() + alpha = uniform(0.1, 10) + + G2 = SymmetricLinearGame(alpha*L, K, e1, e2) + value2 = G2.solution().game_value() + self.assert_within_tol(alpha*value1, value2) + + + def test_nonnegative_scaling_icecream(self): + """ + The same test as :meth:`test_nonnegative_scaling_orthant`, + except over the ice cream cone. + """ + # Use a minimum dimension of two to avoid divide-by-zero in + # the fudge factor we make up later. + ambient_dim = randint(2, 10) + K = IceCream(ambient_dim) + e1 = [1] # Set the "height" of e1 to one + e2 = [1] # And the same for e2 + + # If we choose the rest of the components of e1,e2 randomly + # between 0 and 1, then the largest the squared norm of the + # non-height part of e1,e2 could be is the 1*(dim(K) - 1). We + # need to make it less than one (the height of the cone) so + # that the whole thing is in the cone. The norm of the + # non-height part is sqrt(dim(K) - 1), and we can divide by + # twice that. + fudge_factor = 1.0 / (2.0*sqrt(K.dimension() - 1.0)) + e1 += [fudge_factor*uniform(0, 1) for idx in range(K.dimension() - 1)] + e2 += [fudge_factor*uniform(0, 1) for idx in range(K.dimension() - 1)] + L = matrix([[uniform(-10, 10) for i in range(K.dimension())] + for j in range(K.dimension())]) + + G1 = SymmetricLinearGame(L, K, e1, e2) + value1 = G1.solution().game_value() + alpha = uniform(0.1, 10) + + G2 = SymmetricLinearGame(alpha*L, K, e1, e2) + value2 = G2.solution().game_value() + self.assert_within_tol(alpha*value1, value2) +