From: Michael Orlitzky Date: Thu, 14 May 2015 20:18:17 +0000 (-0400) Subject: Add a random_cone() function and use it in two tests. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=3b659b1d0440daf3ff7bd8cf3cf53f90523a1609;p=sage.d.git Add a random_cone() function and use it in two tests. --- diff --git a/mjo/cone/cone.py b/mjo/cone/cone.py index 2304338..2296e3f 100644 --- a/mjo/cone/cone.py +++ b/mjo/cone/cone.py @@ -8,6 +8,84 @@ addsitedir(abspath('../../')) from sage.all import * +def random_cone(min_dim=None, max_dim=None, min_rays=None, max_rays=None): + r""" + Generate a random rational convex polyhedral cone. + + Lower and upper bounds may be provided for both the dimension of the + ambient space and the number of generating rays of the cone. Any + parameters left unspecified will be chosen randomly. + + INPUT: + + - ``min_dim`` (default: random) -- The minimum dimension of the ambient + lattice. + + - ``max_dim`` (default: random) -- The maximum dimension of the ambient + lattice. + + - ``min_rays`` (default: random) -- The minimum number of generating rays + of the cone. + + - ``max_rays`` (default: random) -- The maximum number of generating rays + of the cone. + + OUTPUT: + + A new, randomly generated cone. + + TESTS: + + It's hard to test the output of a random process, but we can at + least make sure that we get a cone back:: + + sage: from sage.geometry.cone import is_Cone + sage: K = random_cone() + sage: is_Cone(K) # long time + True + + """ + + def random_min_max(l,u): + r""" + We need to handle four cases to prevent us from doing + something stupid like having an upper bound that's lower than + our lower bound. And we would need to repeat all of that logic + for the dimension/rays, so we consolidate it here. + """ + if l is None and u is None: + # They're both random, just return a random nonnegative + # integer. + return ZZ.random_element().abs() + + if l is not None and u is not None: + # Both were specified. Again, just make up a number and + # return it. If the user wants to give us u < l then he + # can have an exception. + return ZZ.random_element(l,u) + + if l is not None and u is None: + # In this case, we're generating the upper bound randomly + # GIVEN A LOWER BOUND. So we add a random nonnegative + # integer to the given lower bound. + u = l + ZZ.random_element().abs() + return ZZ.random_element(l,u) + + # Here we must be in the only remaining case, where we are + # given an upper bound but no lower bound. We might as well + # use zero. + return ZZ.random_element(0,u) + + d = random_min_max(min_dim, max_dim) + r = random_min_max(min_rays, max_rays) + + L = ToricLattice(d) + rays = [L.random_element() for i in range(0,r)] + + # We pass the lattice in case there are no rays. + return Cone(rays, lattice=L) + + def lyapunov_rank(K): r""" Compute the Lyapunov (or bilinearity) rank of this cone. @@ -108,6 +186,23 @@ def lyapunov_rank(K): sage: lyapunov_rank(K) == lyapunov_rank(K.dual()) True + TESTS: + + The Lyapunov rank should be additive on a product of cones:: + + sage: K1 = random_cone(0,10,0,10) + sage: K2 = random_cone(0,10,0,10) + sage: K = K1.cartesian_product(K2) + sage: lyapunov_rank(K) == lyapunov_rank(K1) + lyapunov_rank(K2) + True + + The dual cone `K^{*}` of ``K`` should have the same Lyapunov rank as ``K`` + itself:: + + sage: K = random_cone(0,10,0,10) + sage: lyapunov_rank(K) == lyapunov_rank(K.dual()) + True + """ V = K.lattice().vector_space()