From: Michael Orlitzky Date: Sat, 12 Dec 2020 17:01:58 +0000 (-0500) Subject: eja: start putting back DirectSumEJA.... X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=3b3755e21ddd4f1c44fd8a6bb179f4c3a59c5d2d;p=sage.d.git eja: start putting back DirectSumEJA.... ...and give up because sage is broken on my laptop. --- diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index 58d5ce0..db899dd 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -2652,100 +2652,84 @@ class TrivialEJA(ConcreteEJA): # inappropriate for us. return cls(**kwargs) -# class DirectSumEJA(ConcreteEJA): -# r""" -# The external (orthogonal) direct sum of two other Euclidean Jordan -# algebras. Essentially the Cartesian product of its two factors. -# Every Euclidean Jordan algebra decomposes into an orthogonal -# direct sum of simple Euclidean Jordan algebras, so no generality -# is lost by providing only this construction. - -# SETUP:: - -# sage: from mjo.eja.eja_algebra import (random_eja, -# ....: HadamardEJA, -# ....: RealSymmetricEJA, -# ....: DirectSumEJA) - -# EXAMPLES:: - -# sage: J1 = HadamardEJA(2) -# sage: J2 = RealSymmetricEJA(3) -# sage: J = DirectSumEJA(J1,J2) -# sage: J.dimension() -# 8 -# sage: J.rank() -# 5 - -# TESTS: - -# The external direct sum construction is only valid when the two factors -# have the same base ring; an error is raised otherwise:: - -# sage: set_random_seed() -# sage: J1 = random_eja(field=AA) -# sage: J2 = random_eja(field=QQ,orthonormalize=False) -# sage: J = DirectSumEJA(J1,J2) -# Traceback (most recent call last): -# ... -# ValueError: algebras must share the same base field - -# """ -# def __init__(self, J1, J2, **kwargs): -# if J1.base_ring() != J2.base_ring(): -# raise ValueError("algebras must share the same base field") -# field = J1.base_ring() - -# self._factors = (J1, J2) -# n1 = J1.dimension() -# n2 = J2.dimension() -# n = n1+n2 -# V = VectorSpace(field, n) -# mult_table = [ [ V.zero() for j in range(i+1) ] -# for i in range(n) ] -# for i in range(n1): -# for j in range(i+1): -# p = (J1.monomial(i)*J1.monomial(j)).to_vector() -# mult_table[i][j] = V(p.list() + [field.zero()]*n2) - -# for i in range(n2): -# for j in range(i+1): -# p = (J2.monomial(i)*J2.monomial(j)).to_vector() -# mult_table[n1+i][n1+j] = V([field.zero()]*n1 + p.list()) - -# # TODO: build the IP table here from the two constituent IP -# # matrices (it'll be block diagonal, I think). -# ip_table = [ [ field.zero() for j in range(i+1) ] -# for i in range(n) ] -# super(DirectSumEJA, self).__init__(field, -# mult_table, -# ip_table, -# check_axioms=False, -# **kwargs) -# self.rank.set_cache(J1.rank() + J2.rank()) - - -# def factors(self): -# r""" -# Return the pair of this algebra's factors. +class DirectSumEJA(ConcreteEJA): + r""" + The external (orthogonal) direct sum of two other Euclidean Jordan + algebras. Essentially the Cartesian product of its two factors. + Every Euclidean Jordan algebra decomposes into an orthogonal + direct sum of simple Euclidean Jordan algebras, so no generality + is lost by providing only this construction. -# SETUP:: + SETUP:: -# sage: from mjo.eja.eja_algebra import (HadamardEJA, -# ....: JordanSpinEJA, -# ....: DirectSumEJA) + sage: from mjo.eja.eja_algebra import (random_eja, + ....: HadamardEJA, + ....: RealSymmetricEJA, + ....: DirectSumEJA) -# EXAMPLES:: + EXAMPLES:: -# sage: J1 = HadamardEJA(2, field=QQ) -# sage: J2 = JordanSpinEJA(3, field=QQ) -# sage: J = DirectSumEJA(J1,J2) -# sage: J.factors() -# (Euclidean Jordan algebra of dimension 2 over Rational Field, -# Euclidean Jordan algebra of dimension 3 over Rational Field) + sage: J1 = HadamardEJA(2) + sage: J2 = RealSymmetricEJA(3) + sage: J = DirectSumEJA(J1,J2) + sage: J.dimension() + 8 + sage: J.rank() + 5 -# """ -# return self._factors + TESTS: + + The external direct sum construction is only valid when the two factors + have the same base ring; an error is raised otherwise:: + + sage: set_random_seed() + sage: J1 = random_eja(field=AA) + sage: J2 = random_eja(field=QQ,orthonormalize=False) + sage: J = DirectSumEJA(J1,J2) + Traceback (most recent call last): + ... + ValueError: algebras must share the same base field + + """ + def __init__(self, J1, J2, **kwargs): + if J1.base_ring() != J2.base_ring(): + raise ValueError("algebras must share the same base field") + field = J1.base_ring() + self._factors = (J1, J2) + basis = tuple( (a,b) for a in J1.basis() for b in J2.basis() ) + + def jordan_product(x,y): + return (x[0]*y[0], x[1]*y[1]) + + def inner_product(x,y): + return x[0].inner_product(y[0]) + x[1].inner_product(y[1]) + + super().__init__(basis, jordan_product, inner_product) + + self.rank.set_cache(J1.rank() + J2.rank()) + + + def factors(self): + r""" + Return the pair of this algebra's factors. + + SETUP:: + + sage: from mjo.eja.eja_algebra import (HadamardEJA, + ....: JordanSpinEJA, + ....: DirectSumEJA) + + EXAMPLES:: + + sage: J1 = HadamardEJA(2, field=QQ) + sage: J2 = JordanSpinEJA(3, field=QQ) + sage: J = DirectSumEJA(J1,J2) + sage: J.factors() + (Euclidean Jordan algebra of dimension 2 over Rational Field, + Euclidean Jordan algebra of dimension 3 over Rational Field) + + """ + return self._factors # def projections(self): # r"""