From: Michael Orlitzky Date: Wed, 4 May 2011 03:04:05 +0000 (-0400) Subject: Begin fixing some of the tests. Commented out most of them. X-Git-Tag: 0.0.1~342 X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=33998c9e4eac925df771d224befc5c0974f877bf;p=spline3.git Begin fixing some of the tests. Commented out most of them. Added an Arbitrary instance for FunctionValues. --- diff --git a/src/Tests/Cube.hs b/src/Tests/Cube.hs index eee5444..a832f5a 100644 --- a/src/Tests/Cube.hs +++ b/src/Tests/Cube.hs @@ -3,18 +3,33 @@ where import Test.QuickCheck -import Cube -import Grid (Grid) -import Tests.Grid () +import Cube (Cube(Cube)) +import FunctionValues (FunctionValues(FunctionValues)) +import Tests.FunctionValues instance Arbitrary Cube where arbitrary = do - g' <- arbitrary :: Gen Grid + (Positive h') <- arbitrary :: Gen (Positive Double) i' <- choose (coordmin, coordmax) j' <- choose (coordmin, coordmax) k' <- choose (coordmin, coordmax) - d' <- arbitrary :: Gen Double - return (Cube g' i' j' k' d') + fv' <- arbitrary :: Gen FunctionValues + return (Cube h' i' j' k' fv') where coordmin = -268435456 -- -(2^29 / 2) coordmax = 268435456 -- +(2^29 / 2) + + +-- Quickcheck tests. + +-- | Since the grid size is necessarily positive, all tetrahedrons +-- (which comprise cubes of positive volume) must have positive volume +-- as well. +-- prop_all_volumes_positive :: Cube -> Property +-- prop_all_volumes_positive c = +-- (delta > 0) ==> (null nonpositive_volumes) +-- where +-- delta = h (grid c) +-- ts = tetrahedrons c +-- volumes = map volume ts +-- nonpositive_volumes = filter (<= 0) volumes diff --git a/src/Tests/Face.hs b/src/Tests/Face.hs index decb77a..4a1e9b8 100644 --- a/src/Tests/Face.hs +++ b/src/Tests/Face.hs @@ -6,15 +6,7 @@ import Test.HUnit import Test.QuickCheck import Comparisons -import Cube (Cube(grid), cube_at, top) -import Face (face0, - face2, - face5, - tetrahedron0, - tetrahedron1, - tetrahedron2, - tetrahedron3, - tetrahedrons) +import Face import Grid (Grid(h), make_grid) import Point import Tetrahedron @@ -57,596 +49,584 @@ trilinear = [ [ [ 1, 2, 3 ], -- | Check the value of c0030 for any tetrahedron belonging to the -- cube centered on (1,1,1) with a grid constructed from the -- trilinear values. See example one in the paper. -test_trilinear_c0030 :: Test -test_trilinear_c0030 = - TestCase $ assertAlmostEqual "c0030 is correct" (c t 0 0 3 0) (17/8) - where - g = make_grid 1 trilinear - cube = cube_at g 1 1 1 - t = head (tetrahedrons cube) -- Any one will do. - - --- | Check the value of c0003 for any tetrahedron belonging to the --- cube centered on (1,1,1) with a grid constructed from the --- trilinear values. See example one in the paper. -test_trilinear_c0003 :: Test -test_trilinear_c0003 = - TestCase $ assertAlmostEqual "c0003 is correct" (c t 0 0 0 3) (27/8) - where - g = make_grid 1 trilinear - cube = cube_at g 1 1 1 - t = head (tetrahedrons cube) -- Any one will do. - - --- | Check the value of c0021 for any tetrahedron belonging to the --- cube centered on (1,1,1) with a grid constructed from the --- trilinear values. See example one in the paper. -test_trilinear_c0021 :: Test -test_trilinear_c0021 = - TestCase $ assertAlmostEqual "c0021 is correct" (c t 0 0 2 1) (61/24) - where - g = make_grid 1 trilinear - cube = cube_at g 1 1 1 - t = head (tetrahedrons cube) -- Any one will do. - - --- | Check the value of c0012 for any tetrahedron belonging to the --- cube centered on (1,1,1) with a grid constructed from the --- trilinear values. See example one in the paper. -test_trilinear_c0012 :: Test -test_trilinear_c0012 = - TestCase $ assertAlmostEqual "c0012 is correct" (c t 0 0 1 2) (71/24) - where - g = make_grid 1 trilinear - cube = cube_at g 1 1 1 - t = head (tetrahedrons cube) -- Any one will do. - - --- | Check the value of c0120 for any tetrahedron belonging to the --- cube centered on (1,1,1) with a grid constructed from the --- trilinear values. See example one in the paper. -test_trilinear_c0120 :: Test -test_trilinear_c0120 = - TestCase $ assertAlmostEqual "c0120 is correct" (c t 0 1 2 0) (55/24) - where - g = make_grid 1 trilinear - cube = cube_at g 1 1 1 - t = head (tetrahedrons cube) -- Any one will do. - - --- | Check the value of c0102 for any tetrahedron belonging to the --- cube centered on (1,1,1) with a grid constructed from the --- trilinear values. See example one in the paper. -test_trilinear_c0102 :: Test -test_trilinear_c0102 = - TestCase $ assertAlmostEqual "c0102 is correct" (c t 0 1 0 2) (73/24) - where - g = make_grid 1 trilinear - cube = cube_at g 1 1 1 - t = head (tetrahedrons cube) -- Any one will do. - - --- | Check the value of c0111 for any tetrahedron belonging to the --- cube centered on (1,1,1) with a grid constructed from the --- trilinear values. See example one in the paper. -test_trilinear_c0111 :: Test -test_trilinear_c0111 = - TestCase $ assertAlmostEqual "c0111 is correct" (c t 0 1 1 1) (8/3) - where - g = make_grid 1 trilinear - cube = cube_at g 1 1 1 - t = head (tetrahedrons cube) -- Any one will do. - - --- | Check the value of c0210 for any tetrahedron belonging to the --- cube centered on (1,1,1) with a grid constructed from the --- trilinear values. See example one in the paper. -test_trilinear_c0210 :: Test -test_trilinear_c0210 = - TestCase $ assertAlmostEqual "c0210 is correct" (c t 0 2 1 0) (29/12) - where - g = make_grid 1 trilinear - cube = cube_at g 1 1 1 - t = head (tetrahedrons cube) -- Any one will do. - - --- | Check the value of c0201 for any tetrahedron belonging to the --- cube centered on (1,1,1) with a grid constructed from the --- trilinear values. See example one in the paper. -test_trilinear_c0201 :: Test -test_trilinear_c0201 = - TestCase $ assertAlmostEqual "c0201 is correct" (c t 0 2 0 1) (11/4) - where - g = make_grid 1 trilinear - cube = cube_at g 1 1 1 - t = head (tetrahedrons cube) -- Any one will do. - - --- | Check the value of c0300 for any tetrahedron belonging to the --- cube centered on (1,1,1) with a grid constructed from the --- trilinear values. See example one in the paper. -test_trilinear_c0300 :: Test -test_trilinear_c0300 = - TestCase $ assertAlmostEqual "c0300 is correct" (c t 0 3 0 0) (5/2) - where - g = make_grid 1 trilinear - cube = cube_at g 1 1 1 - t = head (tetrahedrons cube) -- Any one will do. - - --- | Check the value of c1020 for any tetrahedron belonging to the --- cube centered on (1,1,1) with a grid constructed from the --- trilinear values. See example one in the paper. -test_trilinear_c1020 :: Test -test_trilinear_c1020 = - TestCase $ assertAlmostEqual "c1020 is correct" (c t 1 0 2 0) (8/3) - where - g = make_grid 1 trilinear - cube = cube_at g 1 1 1 - t = head (tetrahedrons cube) -- Any one will do. - - --- | Check the value of c1002 for any tetrahedron belonging to the --- cube centered on (1,1,1) with a grid constructed from the --- trilinear values. See example one in the paper. -test_trilinear_c1002 :: Test -test_trilinear_c1002 = - TestCase $ assertAlmostEqual "c1002 is correct" (c t 1 0 0 2) (23/6) - where - g = make_grid 1 trilinear - cube = cube_at g 1 1 1 - t = head (tetrahedrons cube) -- Any one will do. - - --- | Check the value of c1011 for any tetrahedron belonging to the --- cube centered on (1,1,1) with a grid constructed from the --- trilinear values. See example one in the paper. -test_trilinear_c1011 :: Test -test_trilinear_c1011 = - TestCase $ assertAlmostEqual "c1011 is correct" (c t 1 0 1 1) (13/4) - where - g = make_grid 1 trilinear - cube = cube_at g 1 1 1 - t = head (tetrahedrons cube) -- Any one will do. - - --- | Check the value of c1110 for any tetrahedron belonging to the --- cube centered on (1,1,1) with a grid constructed from the --- trilinear values. See example one in the paper. -test_trilinear_c1110 :: Test -test_trilinear_c1110 = - TestCase $ assertAlmostEqual "c1110 is correct" (c t 1 1 1 0) (23/8) - where - g = make_grid 1 trilinear - cube = cube_at g 1 1 1 - t = head (tetrahedrons cube) -- Any one will do. - - --- | Check the value of c1101 for any tetrahedron belonging to the --- cube centered on (1,1,1) with a grid constructed from the --- trilinear values. See example one in the paper. -test_trilinear_c1101 :: Test -test_trilinear_c1101 = - TestCase $ assertAlmostEqual "c1101 is correct" (c t 1 1 0 1) (27/8) - where - g = make_grid 1 trilinear - cube = cube_at g 1 1 1 - t = head (tetrahedrons cube) -- Any one will do. - - --- | Check the value of c1200 for any tetrahedron belonging to the --- cube centered on (1,1,1) with a grid constructed from the --- trilinear values. See example one in the paper. -test_trilinear_c1200 :: Test -test_trilinear_c1200 = - TestCase $ assertAlmostEqual "c1200 is correct" (c t 1 2 0 0) 3 - where - g = make_grid 1 trilinear - cube = cube_at g 1 1 1 - t = head (tetrahedrons cube) -- Any one will do. - - --- | Check the value of c2010 for any tetrahedron belonging to the --- cube centered on (1,1,1) with a grid constructed from the --- trilinear values. See example one in the paper. -test_trilinear_c2010 :: Test -test_trilinear_c2010 = - TestCase $ assertAlmostEqual "c2010 is correct" (c t 2 0 1 0) (10/3) - where - g = make_grid 1 trilinear - cube = cube_at g 1 1 1 - t = head (tetrahedrons cube) -- Any one will do. - - --- | Check the value of c2001 for any tetrahedron belonging to the --- cube centered on (1,1,1) with a grid constructed from the --- trilinear values. See example one in the paper. -test_trilinear_c2001 :: Test -test_trilinear_c2001 = - TestCase $ assertAlmostEqual "c2001 is correct" (c t 2 0 0 1) 4 - where - g = make_grid 1 trilinear - cube = cube_at g 1 1 1 - t = head (tetrahedrons cube) -- Any one will do. - - --- | Check the value of c2100 for any tetrahedron belonging to the --- cube centered on (1,1,1) with a grid constructed from the --- trilinear values. See example one in the paper. -test_trilinear_c2100 :: Test -test_trilinear_c2100 = - TestCase $ assertAlmostEqual "c2100 is correct" (c t 2 1 0 0) (7/2) - where - g = make_grid 1 trilinear - cube = cube_at g 1 1 1 - t = head (tetrahedrons cube) -- Any one will do. - - --- | Check the value of c3000 for any tetrahedron belonging to the --- cube centered on (1,1,1) with a grid constructed from the --- trilinear values. See example one in the paper. -test_trilinear_c3000 :: Test -test_trilinear_c3000 = - TestCase $ assertAlmostEqual "c3000 is correct" (c t 3 0 0 0) 4 - where - g = make_grid 1 trilinear - cube = cube_at g 1 1 1 - t = head (tetrahedrons cube) -- Any one will do. - - - -test_trilinear_f0_t0_v0 :: Test -test_trilinear_f0_t0_v0 = - TestCase $ assertClose "v0 is correct" (v0 t) (0.5, 1.5, 1.5) - where - g = make_grid 1 trilinear - cube = cube_at g 1 1 1 - t = tetrahedron0 (face0 cube) -- Any one will do. - - -test_trilinear_f0_t0_v1 :: Test -test_trilinear_f0_t0_v1 = - TestCase $ assertClose "v1 is correct" (v1 t) (1.5, 1.5, 1.5) - where - g = make_grid 1 trilinear - cube = cube_at g 1 1 1 - t = tetrahedron0 (face0 cube) -- Any one will do. - - -test_trilinear_f0_t0_v2 :: Test -test_trilinear_f0_t0_v2 = - TestCase $ assertClose "v2 is correct" (v2 t) (1, 1, 1.5) - where - g = make_grid 1 trilinear - cube = cube_at g 1 1 1 - t = tetrahedron0 (face0 cube) -- Any one will do. - - - -test_trilinear_f0_t0_v3 :: Test -test_trilinear_f0_t0_v3 = - TestCase $ assertClose "v3 is correct" (v3 t) (1, 1, 1) - where - g = make_grid 1 trilinear - cube = cube_at g 1 1 1 - t = tetrahedron0 (face0 cube) -- Any one will do. - - - -face_tests :: [Test] -face_tests = [test_trilinear_c0030, - test_trilinear_c0003, - test_trilinear_c0021, - test_trilinear_c0012, - test_trilinear_c0120, - test_trilinear_c0102, - test_trilinear_c0111, - test_trilinear_c0210, - test_trilinear_c0201, - test_trilinear_c0300, - test_trilinear_c1020, - test_trilinear_c1002, - test_trilinear_c1011, - test_trilinear_c1110, - test_trilinear_c1101, - test_trilinear_c1200, - test_trilinear_c2010, - test_trilinear_c2001, - test_trilinear_c2100, - test_trilinear_c3000, - test_trilinear_f0_t0_v0, - test_trilinear_f0_t0_v1, - test_trilinear_f0_t0_v2, - test_trilinear_f0_t0_v3] - - --- QuickCheck Tests. - --- | Since the grid size is necessarily positive, all tetrahedrons --- (which comprise cubes of positive volume) must have positive volume --- as well. -prop_all_volumes_positive :: Cube -> Property -prop_all_volumes_positive c = - (delta > 0) ==> (null nonpositive_volumes) - where - delta = h (grid c) - ts = tetrahedrons c - volumes = map volume ts - nonpositive_volumes = filter (<= 0) volumes - - --- | Given in Sorokina and Zeilfelder, p. 78. -prop_cijk1_identity :: Cube -> Bool -prop_cijk1_identity cube = - and [ c t0' i j k 1 ~= (c t1' (i+1) j k 0) * ((b0 t0') (v3 t1')) + - (c t1' i (j+1) k 0) * ((b1 t0') (v3 t1')) + - (c t1' i j (k+1) 0) * ((b2 t0') (v3 t1')) + - (c t1' i j k 1) * ((b3 t0') (v3 t1')) | i <- [0..2], - j <- [0..2], - k <- [0..2], - i + j + k == 2] - where - t0 = tetrahedron0 (face0 cube) - t1 = tetrahedron1 (face0 cube) - t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) - t1' = Tetrahedron cube (v3 t1) (v2 t1) (v0 t1) (v1 t1) - --- | Given in Sorokina and Zeilfelder, p. 79. -prop_c0120_identity1 :: Cube -> Bool -prop_c0120_identity1 cube = - c t0' 0 1 2 0 ~= (c t0' 0 0 2 1 + c t1' 0 0 2 1) / 2 - where - t0 = tetrahedron0 (face0 cube) - t1 = tetrahedron1 (face0 cube) - t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) - t1' = Tetrahedron cube (v3 t1) (v2 t1) (v0 t1) (v1 t1) - - --- | Given in Sorokina and Zeilfelder, p. 79. -prop_c0210_identity1 :: Cube -> Bool -prop_c0210_identity1 cube = - c t0' 0 2 1 0 ~= (c t0' 0 1 1 1 + c t1' 0 1 1 1) / 2 - where - t0 = tetrahedron0 (face0 cube) - t1 = tetrahedron1 (face0 cube) - t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) - t1' = Tetrahedron cube (v3 t1) (v2 t1) (v0 t1) (v1 t1) - - --- | Given in Sorokina and Zeilfelder, p. 79. -prop_c0300_identity1 :: Cube -> Bool -prop_c0300_identity1 cube = - c t0' 0 3 0 0 ~= (c t0' 0 2 0 1 + c t1' 0 2 0 1) / 2 - where - t0 = tetrahedron0 (face0 cube) - t1 = tetrahedron1 (face0 cube) - t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) - t1' = Tetrahedron cube (v3 t1) (v2 t1) (v0 t1) (v1 t1) - --- | Given in Sorokina and Zeilfelder, p. 79. -prop_c1110_identity :: Cube -> Bool -prop_c1110_identity cube = - c t0' 1 1 1 0 ~= (c t0' 1 0 1 1 + c t1' 1 0 1 1) / 2 - where - t0 = tetrahedron0 (face0 cube) - t1 = tetrahedron1 (face0 cube) - t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) - t1' = Tetrahedron cube (v3 t1) (v2 t1) (v0 t1) (v1 t1) - - --- | Given in Sorokina and Zeilfelder, p. 79. -prop_c1200_identity1 :: Cube -> Bool -prop_c1200_identity1 cube = - c t0' 1 2 0 0 ~= (c t0' 1 1 0 1 + c t1' 1 1 0 1) / 2 - where - t0 = tetrahedron0 (face0 cube) - t1 = tetrahedron1 (face0 cube) - t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) - t1' = Tetrahedron cube (v3 t1) (v2 t1) (v0 t1) (v1 t1) - - --- | Given in Sorokina and Zeilfelder, p. 79. -prop_c2100_identity1 :: Cube -> Bool -prop_c2100_identity1 cube = - c t0' 2 1 0 0 ~= (c t0' 2 0 0 1 + c t1' 2 0 0 1) / 2 - where - t0 = tetrahedron0 (face0 cube) - t1 = tetrahedron1 (face0 cube) - t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) - t1' = Tetrahedron cube (v3 t1) (v2 t1) (v0 t1) (v1 t1) - - --- | Given in Sorokina and Zeilfelder, p. 79. -prop_c0102_identity1 :: Cube -> Bool -prop_c0102_identity1 cube = - c t0' 0 1 0 2 ~= (c t0' 0 0 1 2 + c t3' 0 0 1 2) / 2 - where - t0 = tetrahedron0 (face0 cube) - t3 = tetrahedron3 (face0 cube) - t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) - t3' = Tetrahedron cube (v3 t3) (v2 t3) (v1 t3) (v0 t3) - - --- | Given in Sorokina and Zeilfelder, p. 79. -prop_c0201_identity1 :: Cube -> Bool -prop_c0201_identity1 cube = - c t0' 0 2 0 1 ~= (c t0' 0 1 1 1 + c t3' 0 1 1 1) / 2 - where - t0 = tetrahedron0 (face0 cube) - t3 = tetrahedron3 (face0 cube) - t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) - t3' = Tetrahedron cube (v3 t3) (v2 t3) (v1 t3) (v0 t3) - - --- | Given in Sorokina and Zeilfelder, p. 79. -prop_c0300_identity2 :: Cube -> Bool -prop_c0300_identity2 cube = - c t0' 3 0 0 0 ~= (c t0' 0 2 1 0 + c t3' 0 2 1 0) / 2 - where - t0 = tetrahedron0 (face0 cube) - t3 = tetrahedron3 (face0 cube) - t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) - t3' = Tetrahedron cube (v3 t3) (v2 t3) (v1 t3) (v0 t3) - --- | Given in Sorokina and Zeilfelder, p. 79. -prop_c1101_identity :: Cube -> Bool -prop_c1101_identity cube = - c t0' 1 1 0 1 ~= (c t0' 1 1 0 1 + c t3' 1 1 0 1) / 2 - where - t0 = tetrahedron0 (face0 cube) - t3 = tetrahedron3 (face0 cube) - t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) - t3' = Tetrahedron cube (v3 t3) (v2 t3) (v1 t3) (v0 t3) - - --- | Given in Sorokina and Zeilfelder, p. 79. -prop_c1200_identity2 :: Cube -> Bool -prop_c1200_identity2 cube = - c t0' 1 1 1 0 ~= (c t0' 1 1 1 0 + c t3' 1 1 1 0) / 2 - where - t0 = tetrahedron0 (face0 cube) - t3 = tetrahedron3 (face0 cube) - t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) - t3' = Tetrahedron cube (v3 t3) (v2 t3) (v1 t3) (v0 t3) - - --- | Given in Sorokina and Zeilfelder, p. 79. -prop_c2100_identity2 :: Cube -> Bool -prop_c2100_identity2 cube = - c t0' 2 1 0 0 ~= (c t0' 2 0 1 0 + c t3' 2 0 1 0) / 2 - where - t0 = tetrahedron0 (face0 cube) - t3 = tetrahedron3 (face0 cube) - t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) - t3' = Tetrahedron cube (v3 t3) (v2 t3) (v1 t3) (v0 t3) - - --- | Given in Sorokina and Zeilfelder, p. 79. -prop_c3000_identity :: Cube -> Bool -prop_c3000_identity cube = - c t0' 3 0 0 0 ~= c t0' 2 1 0 0 + c t2' 2 1 0 0 - ((c t0' 2 0 1 0 + c t0' 2 0 0 1)/ 2) - where - t0 = tetrahedron0 (face0 cube) - t2 = tetrahedron2 (face5 cube) - t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) - t2' = Tetrahedron cube (v3 t2) (v2 t2) (v1 t2) (v0 t2) - - --- | Given in Sorokina and Zeilfelder, p. 79. -prop_c2010_identity :: Cube -> Bool -prop_c2010_identity cube = - c t0' 2 0 1 0 ~= c t0' 1 1 1 0 + c t2' 1 1 1 0 - ((c t0' 1 0 2 0 + c t0' 1 0 1 1)/ 2) - where - t0 = tetrahedron0 (face0 cube) - t2 = tetrahedron2 (face5 cube) - t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) - t2' = Tetrahedron cube (v3 t2) (v2 t2) (v1 t2) (v0 t2) - - --- | Given in Sorokina and Zeilfelder, p. 79. -prop_c2001_identity :: Cube -> Bool -prop_c2001_identity cube = - c t0' 2 0 0 1 ~= c t0' 1 1 0 1 + c t2' 1 1 0 1 - ((c t0' 1 0 0 2 + c t0' 1 0 1 1)/ 2) - where - t0 = tetrahedron0 (face0 cube) - t2 = tetrahedron2 (face5 cube) - t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) - t2' = Tetrahedron cube (v3 t2) (v2 t2) (v1 t2) (v0 t2) - --- | Given in Sorokina and Zeilfelder, p. 79. -prop_c1020_identity :: Cube -> Bool -prop_c1020_identity cube = - c t0' 1 0 2 0 ~= c t0' 0 1 2 0 + c t2' 0 1 2 0 - ((c t0' 0 0 3 0 + c t0' 0 0 2 1)/ 2) - where - t0 = tetrahedron0 (face0 cube) - t2 = tetrahedron2 (face5 cube) - t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) - t2' = Tetrahedron cube (v3 t2) (v2 t2) (v1 t2) (v0 t2) - - --- | Given in Sorokina and Zeilfelder, p. 79. -prop_c1002_identity :: Cube -> Bool -prop_c1002_identity cube = - c t0' 1 0 0 2 ~= c t0' 0 1 0 2 + c t2' 0 1 0 2 - ((c t0' 0 0 0 3 + c t0' 0 0 1 2)/ 2) - where - t0 = tetrahedron0 (face0 cube) - t2 = tetrahedron2 (face5 cube) - t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) - t2' = Tetrahedron cube (v3 t2) (v2 t2) (v1 t2) (v0 t2) - - --- | Given in Sorokina and Zeilfelder, p. 79. -prop_c1011_identity :: Cube -> Bool -prop_c1011_identity cube = - c t0' 1 0 1 1 ~= c t0' 0 1 1 1 + c t2' 0 1 1 1 - ((c t0' 0 0 1 2 + c t0' 0 0 2 1)/ 2) - where - t0 = tetrahedron0 (face0 cube) - t2 = tetrahedron2 (face5 cube) - t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) - t2' = Tetrahedron cube (v3 t2) (v2 t2) (v1 t2) (v0 t2) - - --- | Given in Sorokina and Zeilfelder, p. 80. -prop_c0120_identity2 :: Cube -> Bool -prop_c0120_identity2 cube = - c t0' 0 1 2 0 ~= (c t0' 1 0 2 0 + c t1' 1 0 2 0) / 2 - where - t0 = tetrahedron0 (face0 cube) - t1 = tetrahedron0 (face2 (top cube)) - t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) - t1' = Tetrahedron cube (v3 t1) (v2 t1) (v0 t1) (v1 t1) - - --- | Given in Sorokina and Zeilfelder, p. 80. -prop_c0102_identity2 :: Cube -> Bool -prop_c0102_identity2 cube = - c t0' 0 1 0 2 ~= (c t0' 1 0 0 2 + c t1' 1 0 0 2) / 2 - where - t0 = tetrahedron0 (face0 cube) - t1 = tetrahedron0 (face2 (top cube)) - t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) - t1' = Tetrahedron cube (v3 t1) (v2 t1) (v0 t1) (v1 t1) - - --- | Given in Sorokina and Zeilfelder, p. 80. -prop_c0111_identity :: Cube -> Bool -prop_c0111_identity cube = - c t0' 0 1 1 1 ~= (c t0' 1 0 1 1 + c t1' 1 0 1 1) / 2 - where - t0 = tetrahedron0 (face0 cube) - t1 = tetrahedron0 (face2 (top cube)) - t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) - t1' = Tetrahedron cube (v3 t1) (v2 t1) (v0 t1) (v1 t1) - - --- | Given in Sorokina and Zeilfelder, p. 80. -prop_c0210_identity2 :: Cube -> Bool -prop_c0210_identity2 cube = - c t0 0 2 1 0 ~= (c t0 1 1 1 0 + c t1 1 1 1 0) / 2 - where - t0 = tetrahedron0 (face0 cube) - t1 = tetrahedron0 (face2 (top cube)) - t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) - t1' = Tetrahedron cube (v3 t1) (v2 t1) (v0 t1) (v1 t1) - - --- | Given in Sorokina and Zeilfelder, p. 80. -prop_c0201_identity2 :: Cube -> Bool -prop_c0201_identity2 cube = - c t0 0 2 0 1 ~= (c t0 1 1 0 1 + c t1 1 1 0 1) / 2 - where - t0 = tetrahedron0 (face0 cube) - t1 = tetrahedron0 (face2 (top cube)) - t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) - t1' = Tetrahedron cube (v3 t1) (v2 t1) (v0 t1) (v1 t1) - - --- | Given in Sorokina and Zeilfelder, p. 80. -prop_c0300_identity3 :: Cube -> Bool -prop_c0300_identity3 cube = - c t0 0 3 0 0 ~= (c t0 1 2 0 0 + c t1 1 2 0 0) / 2 - where - t0 = tetrahedron0 (face0 cube) - t1 = tetrahedron0 (face2 (top cube)) - t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) - t1' = Tetrahedron cube (v3 t1) (v2 t1) (v0 t1) (v1 t1) +-- test_trilinear_c0030 :: Test +-- test_trilinear_c0030 = +-- TestCase $ assertAlmostEqual "c0030 is correct" (c t 0 0 3 0) (17/8) +-- where +-- g = make_grid 1 trilinear +-- cube = cube_at g 1 1 1 +-- t = head (tetrahedrons cube) -- Any one will do. + + +-- -- | Check the value of c0003 for any tetrahedron belonging to the +-- -- cube centered on (1,1,1) with a grid constructed from the +-- -- trilinear values. See example one in the paper. +-- test_trilinear_c0003 :: Test +-- test_trilinear_c0003 = +-- TestCase $ assertAlmostEqual "c0003 is correct" (c t 0 0 0 3) (27/8) +-- where +-- g = make_grid 1 trilinear +-- cube = cube_at g 1 1 1 +-- t = head (tetrahedrons cube) -- Any one will do. + + +-- -- | Check the value of c0021 for any tetrahedron belonging to the +-- -- cube centered on (1,1,1) with a grid constructed from the +-- -- trilinear values. See example one in the paper. +-- test_trilinear_c0021 :: Test +-- test_trilinear_c0021 = +-- TestCase $ assertAlmostEqual "c0021 is correct" (c t 0 0 2 1) (61/24) +-- where +-- g = make_grid 1 trilinear +-- cube = cube_at g 1 1 1 +-- t = head (tetrahedrons cube) -- Any one will do. + + +-- -- | Check the value of c0012 for any tetrahedron belonging to the +-- -- cube centered on (1,1,1) with a grid constructed from the +-- -- trilinear values. See example one in the paper. +-- test_trilinear_c0012 :: Test +-- test_trilinear_c0012 = +-- TestCase $ assertAlmostEqual "c0012 is correct" (c t 0 0 1 2) (71/24) +-- where +-- g = make_grid 1 trilinear +-- cube = cube_at g 1 1 1 +-- t = head (tetrahedrons cube) -- Any one will do. + + +-- -- | Check the value of c0120 for any tetrahedron belonging to the +-- -- cube centered on (1,1,1) with a grid constructed from the +-- -- trilinear values. See example one in the paper. +-- test_trilinear_c0120 :: Test +-- test_trilinear_c0120 = +-- TestCase $ assertAlmostEqual "c0120 is correct" (c t 0 1 2 0) (55/24) +-- where +-- g = make_grid 1 trilinear +-- cube = cube_at g 1 1 1 +-- t = head (tetrahedrons cube) -- Any one will do. + + +-- -- | Check the value of c0102 for any tetrahedron belonging to the +-- -- cube centered on (1,1,1) with a grid constructed from the +-- -- trilinear values. See example one in the paper. +-- test_trilinear_c0102 :: Test +-- test_trilinear_c0102 = +-- TestCase $ assertAlmostEqual "c0102 is correct" (c t 0 1 0 2) (73/24) +-- where +-- g = make_grid 1 trilinear +-- cube = cube_at g 1 1 1 +-- t = head (tetrahedrons cube) -- Any one will do. + + +-- -- | Check the value of c0111 for any tetrahedron belonging to the +-- -- cube centered on (1,1,1) with a grid constructed from the +-- -- trilinear values. See example one in the paper. +-- test_trilinear_c0111 :: Test +-- test_trilinear_c0111 = +-- TestCase $ assertAlmostEqual "c0111 is correct" (c t 0 1 1 1) (8/3) +-- where +-- g = make_grid 1 trilinear +-- cube = cube_at g 1 1 1 +-- t = head (tetrahedrons cube) -- Any one will do. + + +-- -- | Check the value of c0210 for any tetrahedron belonging to the +-- -- cube centered on (1,1,1) with a grid constructed from the +-- -- trilinear values. See example one in the paper. +-- test_trilinear_c0210 :: Test +-- test_trilinear_c0210 = +-- TestCase $ assertAlmostEqual "c0210 is correct" (c t 0 2 1 0) (29/12) +-- where +-- g = make_grid 1 trilinear +-- cube = cube_at g 1 1 1 +-- t = head (tetrahedrons cube) -- Any one will do. + + +-- -- | Check the value of c0201 for any tetrahedron belonging to the +-- -- cube centered on (1,1,1) with a grid constructed from the +-- -- trilinear values. See example one in the paper. +-- test_trilinear_c0201 :: Test +-- test_trilinear_c0201 = +-- TestCase $ assertAlmostEqual "c0201 is correct" (c t 0 2 0 1) (11/4) +-- where +-- g = make_grid 1 trilinear +-- cube = cube_at g 1 1 1 +-- t = head (tetrahedrons cube) -- Any one will do. + + +-- -- | Check the value of c0300 for any tetrahedron belonging to the +-- -- cube centered on (1,1,1) with a grid constructed from the +-- -- trilinear values. See example one in the paper. +-- test_trilinear_c0300 :: Test +-- test_trilinear_c0300 = +-- TestCase $ assertAlmostEqual "c0300 is correct" (c t 0 3 0 0) (5/2) +-- where +-- g = make_grid 1 trilinear +-- cube = cube_at g 1 1 1 +-- t = head (tetrahedrons cube) -- Any one will do. + + +-- -- | Check the value of c1020 for any tetrahedron belonging to the +-- -- cube centered on (1,1,1) with a grid constructed from the +-- -- trilinear values. See example one in the paper. +-- test_trilinear_c1020 :: Test +-- test_trilinear_c1020 = +-- TestCase $ assertAlmostEqual "c1020 is correct" (c t 1 0 2 0) (8/3) +-- where +-- g = make_grid 1 trilinear +-- cube = cube_at g 1 1 1 +-- t = head (tetrahedrons cube) -- Any one will do. + + +-- -- | Check the value of c1002 for any tetrahedron belonging to the +-- -- cube centered on (1,1,1) with a grid constructed from the +-- -- trilinear values. See example one in the paper. +-- test_trilinear_c1002 :: Test +-- test_trilinear_c1002 = +-- TestCase $ assertAlmostEqual "c1002 is correct" (c t 1 0 0 2) (23/6) +-- where +-- g = make_grid 1 trilinear +-- cube = cube_at g 1 1 1 +-- t = head (tetrahedrons cube) -- Any one will do. + + +-- -- | Check the value of c1011 for any tetrahedron belonging to the +-- -- cube centered on (1,1,1) with a grid constructed from the +-- -- trilinear values. See example one in the paper. +-- test_trilinear_c1011 :: Test +-- test_trilinear_c1011 = +-- TestCase $ assertAlmostEqual "c1011 is correct" (c t 1 0 1 1) (13/4) +-- where +-- g = make_grid 1 trilinear +-- cube = cube_at g 1 1 1 +-- t = head (tetrahedrons cube) -- Any one will do. + + +-- -- | Check the value of c1110 for any tetrahedron belonging to the +-- -- cube centered on (1,1,1) with a grid constructed from the +-- -- trilinear values. See example one in the paper. +-- test_trilinear_c1110 :: Test +-- test_trilinear_c1110 = +-- TestCase $ assertAlmostEqual "c1110 is correct" (c t 1 1 1 0) (23/8) +-- where +-- g = make_grid 1 trilinear +-- cube = cube_at g 1 1 1 +-- t = head (tetrahedrons cube) -- Any one will do. + + +-- -- | Check the value of c1101 for any tetrahedron belonging to the +-- -- cube centered on (1,1,1) with a grid constructed from the +-- -- trilinear values. See example one in the paper. +-- test_trilinear_c1101 :: Test +-- test_trilinear_c1101 = +-- TestCase $ assertAlmostEqual "c1101 is correct" (c t 1 1 0 1) (27/8) +-- where +-- g = make_grid 1 trilinear +-- cube = cube_at g 1 1 1 +-- t = head (tetrahedrons cube) -- Any one will do. + + +-- -- | Check the value of c1200 for any tetrahedron belonging to the +-- -- cube centered on (1,1,1) with a grid constructed from the +-- -- trilinear values. See example one in the paper. +-- test_trilinear_c1200 :: Test +-- test_trilinear_c1200 = +-- TestCase $ assertAlmostEqual "c1200 is correct" (c t 1 2 0 0) 3 +-- where +-- g = make_grid 1 trilinear +-- cube = cube_at g 1 1 1 +-- t = head (tetrahedrons cube) -- Any one will do. + + +-- -- | Check the value of c2010 for any tetrahedron belonging to the +-- -- cube centered on (1,1,1) with a grid constructed from the +-- -- trilinear values. See example one in the paper. +-- test_trilinear_c2010 :: Test +-- test_trilinear_c2010 = +-- TestCase $ assertAlmostEqual "c2010 is correct" (c t 2 0 1 0) (10/3) +-- where +-- g = make_grid 1 trilinear +-- cube = cube_at g 1 1 1 +-- t = head (tetrahedrons cube) -- Any one will do. + + +-- -- | Check the value of c2001 for any tetrahedron belonging to the +-- -- cube centered on (1,1,1) with a grid constructed from the +-- -- trilinear values. See example one in the paper. +-- test_trilinear_c2001 :: Test +-- test_trilinear_c2001 = +-- TestCase $ assertAlmostEqual "c2001 is correct" (c t 2 0 0 1) 4 +-- where +-- g = make_grid 1 trilinear +-- cube = cube_at g 1 1 1 +-- t = head (tetrahedrons cube) -- Any one will do. + + +-- -- | Check the value of c2100 for any tetrahedron belonging to the +-- -- cube centered on (1,1,1) with a grid constructed from the +-- -- trilinear values. See example one in the paper. +-- test_trilinear_c2100 :: Test +-- test_trilinear_c2100 = +-- TestCase $ assertAlmostEqual "c2100 is correct" (c t 2 1 0 0) (7/2) +-- where +-- g = make_grid 1 trilinear +-- cube = cube_at g 1 1 1 +-- t = head (tetrahedrons cube) -- Any one will do. + + +-- -- | Check the value of c3000 for any tetrahedron belonging to the +-- -- cube centered on (1,1,1) with a grid constructed from the +-- -- trilinear values. See example one in the paper. +-- -- test_trilinear_c3000 :: Test +-- -- test_trilinear_c3000 = +-- -- TestCase $ assertAlmostEqual "c3000 is correct" (c t 3 0 0 0) 4 +-- -- where +-- -- g = make_grid 1 trilinear +-- -- cube = cube_at g 1 1 1 +-- -- t = head (tetrahedrons cube) -- Any one will do. + + + +-- -- test_trilinear_f0_t0_v0 :: Test +-- -- test_trilinear_f0_t0_v0 = +-- -- TestCase $ assertClose "v0 is correct" (v0 t) (0.5, 1.5, 1.5) +-- -- where +-- -- g = make_grid 1 trilinear +-- -- cube = cube_at g 1 1 1 +-- -- t = tetrahedron0 (face0 cube) -- Any one will do. + + +-- -- test_trilinear_f0_t0_v1 :: Test +-- -- test_trilinear_f0_t0_v1 = +-- -- TestCase $ assertClose "v1 is correct" (v1 t) (1.5, 1.5, 1.5) +-- -- where +-- -- g = make_grid 1 trilinear +-- -- cube = cube_at g 1 1 1 +-- -- t = tetrahedron0 (face0 cube) -- Any one will do. + + +-- -- test_trilinear_f0_t0_v2 :: Test +-- -- test_trilinear_f0_t0_v2 = +-- -- TestCase $ assertClose "v2 is correct" (v2 t) (1, 1, 1.5) +-- -- where +-- -- g = make_grid 1 trilinear +-- -- cube = cube_at g 1 1 1 +-- -- t = tetrahedron0 (face0 cube) -- Any one will do. + + + +-- -- test_trilinear_f0_t0_v3 :: Test +-- -- test_trilinear_f0_t0_v3 = +-- -- TestCase $ assertClose "v3 is correct" (v3 t) (1, 1, 1) +-- -- where +-- -- g = make_grid 1 trilinear +-- -- cube = cube_at g 1 1 1 +-- -- t = tetrahedron0 (face0 cube) -- Any one will do. + + + +-- face_tests :: [Test] +-- face_tests = [test_trilinear_c0030, +-- test_trilinear_c0003, +-- test_trilinear_c0021, +-- test_trilinear_c0012, +-- test_trilinear_c0120, +-- test_trilinear_c0102, +-- test_trilinear_c0111, +-- test_trilinear_c0210, +-- test_trilinear_c0201, +-- test_trilinear_c0300, +-- test_trilinear_c1020, +-- test_trilinear_c1002, +-- test_trilinear_c1011, +-- test_trilinear_c1110, +-- test_trilinear_c1101, +-- test_trilinear_c1200, +-- test_trilinear_c2010, +-- test_trilinear_c2001, +-- test_trilinear_c2100, +-- test_trilinear_c3000, +-- test_trilinear_f0_t0_v0, +-- test_trilinear_f0_t0_v1, +-- test_trilinear_f0_t0_v2, +-- test_trilinear_f0_t0_v3] + + +-- -- QuickCheck Tests. + + +-- -- | Given in Sorokina and Zeilfelder, p. 78. +-- prop_cijk1_identity :: Cube -> Bool +-- prop_cijk1_identity cube = +-- and [ c t0' i j k 1 ~= (c t1' (i+1) j k 0) * ((b0 t0') (v3 t1')) + +-- (c t1' i (j+1) k 0) * ((b1 t0') (v3 t1')) + +-- (c t1' i j (k+1) 0) * ((b2 t0') (v3 t1')) + +-- (c t1' i j k 1) * ((b3 t0') (v3 t1')) | i <- [0..2], +-- j <- [0..2], +-- k <- [0..2], +-- i + j + k == 2] +-- where +-- t0 = tetrahedron0 (face0 cube) +-- t1 = tetrahedron1 (face0 cube) +-- t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) +-- t1' = Tetrahedron cube (v3 t1) (v2 t1) (v0 t1) (v1 t1) + +-- -- | Given in Sorokina and Zeilfelder, p. 79. +-- prop_c0120_identity1 :: Cube -> Bool +-- prop_c0120_identity1 cube = +-- c t0' 0 1 2 0 ~= (c t0' 0 0 2 1 + c t1' 0 0 2 1) / 2 +-- where +-- t0 = tetrahedron0 (face0 cube) +-- t1 = tetrahedron1 (face0 cube) +-- t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) +-- t1' = Tetrahedron cube (v3 t1) (v2 t1) (v0 t1) (v1 t1) + + +-- -- | Given in Sorokina and Zeilfelder, p. 79. +-- prop_c0210_identity1 :: Cube -> Bool +-- prop_c0210_identity1 cube = +-- c t0' 0 2 1 0 ~= (c t0' 0 1 1 1 + c t1' 0 1 1 1) / 2 +-- where +-- t0 = tetrahedron0 (face0 cube) +-- t1 = tetrahedron1 (face0 cube) +-- t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) +-- t1' = Tetrahedron cube (v3 t1) (v2 t1) (v0 t1) (v1 t1) + + +-- -- | Given in Sorokina and Zeilfelder, p. 79. +-- prop_c0300_identity1 :: Cube -> Bool +-- prop_c0300_identity1 cube = +-- c t0' 0 3 0 0 ~= (c t0' 0 2 0 1 + c t1' 0 2 0 1) / 2 +-- where +-- t0 = tetrahedron0 (face0 cube) +-- t1 = tetrahedron1 (face0 cube) +-- t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) +-- t1' = Tetrahedron cube (v3 t1) (v2 t1) (v0 t1) (v1 t1) + +-- -- | Given in Sorokina and Zeilfelder, p. 79. +-- prop_c1110_identity :: Cube -> Bool +-- prop_c1110_identity cube = +-- c t0' 1 1 1 0 ~= (c t0' 1 0 1 1 + c t1' 1 0 1 1) / 2 +-- where +-- t0 = tetrahedron0 (face0 cube) +-- t1 = tetrahedron1 (face0 cube) +-- t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) +-- t1' = Tetrahedron cube (v3 t1) (v2 t1) (v0 t1) (v1 t1) + + +-- -- | Given in Sorokina and Zeilfelder, p. 79. +-- prop_c1200_identity1 :: Cube -> Bool +-- prop_c1200_identity1 cube = +-- c t0' 1 2 0 0 ~= (c t0' 1 1 0 1 + c t1' 1 1 0 1) / 2 +-- where +-- t0 = tetrahedron0 (face0 cube) +-- t1 = tetrahedron1 (face0 cube) +-- t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) +-- t1' = Tetrahedron cube (v3 t1) (v2 t1) (v0 t1) (v1 t1) + + +-- -- | Given in Sorokina and Zeilfelder, p. 79. +-- prop_c2100_identity1 :: Cube -> Bool +-- prop_c2100_identity1 cube = +-- c t0' 2 1 0 0 ~= (c t0' 2 0 0 1 + c t1' 2 0 0 1) / 2 +-- where +-- t0 = tetrahedron0 (face0 cube) +-- t1 = tetrahedron1 (face0 cube) +-- t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) +-- t1' = Tetrahedron cube (v3 t1) (v2 t1) (v0 t1) (v1 t1) + + +-- -- | Given in Sorokina and Zeilfelder, p. 79. +-- prop_c0102_identity1 :: Cube -> Bool +-- prop_c0102_identity1 cube = +-- c t0' 0 1 0 2 ~= (c t0' 0 0 1 2 + c t3' 0 0 1 2) / 2 +-- where +-- t0 = tetrahedron0 (face0 cube) +-- t3 = tetrahedron3 (face0 cube) +-- t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) +-- t3' = Tetrahedron cube (v3 t3) (v2 t3) (v1 t3) (v0 t3) + + +-- -- | Given in Sorokina and Zeilfelder, p. 79. +-- prop_c0201_identity1 :: Cube -> Bool +-- prop_c0201_identity1 cube = +-- c t0' 0 2 0 1 ~= (c t0' 0 1 1 1 + c t3' 0 1 1 1) / 2 +-- where +-- t0 = tetrahedron0 (face0 cube) +-- t3 = tetrahedron3 (face0 cube) +-- t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) +-- t3' = Tetrahedron cube (v3 t3) (v2 t3) (v1 t3) (v0 t3) + + +-- -- | Given in Sorokina and Zeilfelder, p. 79. +-- prop_c0300_identity2 :: Cube -> Bool +-- prop_c0300_identity2 cube = +-- c t0' 3 0 0 0 ~= (c t0' 0 2 1 0 + c t3' 0 2 1 0) / 2 +-- where +-- t0 = tetrahedron0 (face0 cube) +-- t3 = tetrahedron3 (face0 cube) +-- t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) +-- t3' = Tetrahedron cube (v3 t3) (v2 t3) (v1 t3) (v0 t3) + +-- -- | Given in Sorokina and Zeilfelder, p. 79. +-- prop_c1101_identity :: Cube -> Bool +-- prop_c1101_identity cube = +-- c t0' 1 1 0 1 ~= (c t0' 1 1 0 1 + c t3' 1 1 0 1) / 2 +-- where +-- t0 = tetrahedron0 (face0 cube) +-- t3 = tetrahedron3 (face0 cube) +-- t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) +-- t3' = Tetrahedron cube (v3 t3) (v2 t3) (v1 t3) (v0 t3) + + +-- -- | Given in Sorokina and Zeilfelder, p. 79. +-- prop_c1200_identity2 :: Cube -> Bool +-- prop_c1200_identity2 cube = +-- c t0' 1 1 1 0 ~= (c t0' 1 1 1 0 + c t3' 1 1 1 0) / 2 +-- where +-- t0 = tetrahedron0 (face0 cube) +-- t3 = tetrahedron3 (face0 cube) +-- t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) +-- t3' = Tetrahedron cube (v3 t3) (v2 t3) (v1 t3) (v0 t3) + + +-- -- | Given in Sorokina and Zeilfelder, p. 79. +-- prop_c2100_identity2 :: Cube -> Bool +-- prop_c2100_identity2 cube = +-- c t0' 2 1 0 0 ~= (c t0' 2 0 1 0 + c t3' 2 0 1 0) / 2 +-- where +-- t0 = tetrahedron0 (face0 cube) +-- t3 = tetrahedron3 (face0 cube) +-- t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) +-- t3' = Tetrahedron cube (v3 t3) (v2 t3) (v1 t3) (v0 t3) + + +-- -- | Given in Sorokina and Zeilfelder, p. 79. +-- prop_c3000_identity :: Cube -> Bool +-- prop_c3000_identity cube = +-- c t0' 3 0 0 0 ~= c t0' 2 1 0 0 + c t2' 2 1 0 0 - ((c t0' 2 0 1 0 + c t0' 2 0 0 1)/ 2) +-- where +-- t0 = tetrahedron0 (face0 cube) +-- t2 = tetrahedron2 (face5 cube) +-- t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) +-- t2' = Tetrahedron cube (v3 t2) (v2 t2) (v1 t2) (v0 t2) + + +-- -- | Given in Sorokina and Zeilfelder, p. 79. +-- prop_c2010_identity :: Cube -> Bool +-- prop_c2010_identity cube = +-- c t0' 2 0 1 0 ~= c t0' 1 1 1 0 + c t2' 1 1 1 0 - ((c t0' 1 0 2 0 + c t0' 1 0 1 1)/ 2) +-- where +-- t0 = tetrahedron0 (face0 cube) +-- t2 = tetrahedron2 (face5 cube) +-- t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) +-- t2' = Tetrahedron cube (v3 t2) (v2 t2) (v1 t2) (v0 t2) + + +-- -- | Given in Sorokina and Zeilfelder, p. 79. +-- prop_c2001_identity :: Cube -> Bool +-- prop_c2001_identity cube = +-- c t0' 2 0 0 1 ~= c t0' 1 1 0 1 + c t2' 1 1 0 1 - ((c t0' 1 0 0 2 + c t0' 1 0 1 1)/ 2) +-- where +-- t0 = tetrahedron0 (face0 cube) +-- t2 = tetrahedron2 (face5 cube) +-- t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) +-- t2' = Tetrahedron cube (v3 t2) (v2 t2) (v1 t2) (v0 t2) + +-- -- | Given in Sorokina and Zeilfelder, p. 79. +-- prop_c1020_identity :: Cube -> Bool +-- prop_c1020_identity cube = +-- c t0' 1 0 2 0 ~= c t0' 0 1 2 0 + c t2' 0 1 2 0 - ((c t0' 0 0 3 0 + c t0' 0 0 2 1)/ 2) +-- where +-- t0 = tetrahedron0 (face0 cube) +-- t2 = tetrahedron2 (face5 cube) +-- t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) +-- t2' = Tetrahedron cube (v3 t2) (v2 t2) (v1 t2) (v0 t2) + + +-- -- | Given in Sorokina and Zeilfelder, p. 79. +-- prop_c1002_identity :: Cube -> Bool +-- prop_c1002_identity cube = +-- c t0' 1 0 0 2 ~= c t0' 0 1 0 2 + c t2' 0 1 0 2 - ((c t0' 0 0 0 3 + c t0' 0 0 1 2)/ 2) +-- where +-- t0 = tetrahedron0 (face0 cube) +-- t2 = tetrahedron2 (face5 cube) +-- t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) +-- t2' = Tetrahedron cube (v3 t2) (v2 t2) (v1 t2) (v0 t2) + + +-- -- | Given in Sorokina and Zeilfelder, p. 79. +-- prop_c1011_identity :: Cube -> Bool +-- prop_c1011_identity cube = +-- c t0' 1 0 1 1 ~= c t0' 0 1 1 1 + c t2' 0 1 1 1 - ((c t0' 0 0 1 2 + c t0' 0 0 2 1)/ 2) +-- where +-- t0 = tetrahedron0 (face0 cube) +-- t2 = tetrahedron2 (face5 cube) +-- t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) +-- t2' = Tetrahedron cube (v3 t2) (v2 t2) (v1 t2) (v0 t2) + + +-- -- | Given in Sorokina and Zeilfelder, p. 80. +-- prop_c0120_identity2 :: Cube -> Bool +-- prop_c0120_identity2 cube = +-- c t0' 0 1 2 0 ~= (c t0' 1 0 2 0 + c t1' 1 0 2 0) / 2 +-- where +-- t0 = tetrahedron0 (face0 cube) +-- t1 = tetrahedron0 (face2 (top cube)) +-- t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) +-- t1' = Tetrahedron cube (v3 t1) (v2 t1) (v0 t1) (v1 t1) + + +-- -- | Given in Sorokina and Zeilfelder, p. 80. +-- prop_c0102_identity2 :: Cube -> Bool +-- prop_c0102_identity2 cube = +-- c t0' 0 1 0 2 ~= (c t0' 1 0 0 2 + c t1' 1 0 0 2) / 2 +-- where +-- t0 = tetrahedron0 (face0 cube) +-- t1 = tetrahedron0 (face2 (top cube)) +-- t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) +-- t1' = Tetrahedron cube (v3 t1) (v2 t1) (v0 t1) (v1 t1) + + +-- -- | Given in Sorokina and Zeilfelder, p. 80. +-- prop_c0111_identity :: Cube -> Bool +-- prop_c0111_identity cube = +-- c t0' 0 1 1 1 ~= (c t0' 1 0 1 1 + c t1' 1 0 1 1) / 2 +-- where +-- t0 = tetrahedron0 (face0 cube) +-- t1 = tetrahedron0 (face2 (top cube)) +-- t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) +-- t1' = Tetrahedron cube (v3 t1) (v2 t1) (v0 t1) (v1 t1) + + +-- -- | Given in Sorokina and Zeilfelder, p. 80. +-- prop_c0210_identity2 :: Cube -> Bool +-- prop_c0210_identity2 cube = +-- c t0 0 2 1 0 ~= (c t0 1 1 1 0 + c t1 1 1 1 0) / 2 +-- where +-- t0 = tetrahedron0 (face0 cube) +-- t1 = tetrahedron0 (face2 (top cube)) +-- t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) +-- t1' = Tetrahedron cube (v3 t1) (v2 t1) (v0 t1) (v1 t1) + + +-- -- | Given in Sorokina and Zeilfelder, p. 80. +-- prop_c0201_identity2 :: Cube -> Bool +-- prop_c0201_identity2 cube = +-- c t0 0 2 0 1 ~= (c t0 1 1 0 1 + c t1 1 1 0 1) / 2 +-- where +-- t0 = tetrahedron0 (face0 cube) +-- t1 = tetrahedron0 (face2 (top cube)) +-- t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) +-- t1' = Tetrahedron cube (v3 t1) (v2 t1) (v0 t1) (v1 t1) + + +-- -- | Given in Sorokina and Zeilfelder, p. 80. +-- prop_c0300_identity3 :: Cube -> Bool +-- prop_c0300_identity3 cube = +-- c t0 0 3 0 0 ~= (c t0 1 2 0 0 + c t1 1 2 0 0) / 2 +-- where +-- t0 = tetrahedron0 (face0 cube) +-- t1 = tetrahedron0 (face2 (top cube)) +-- t0' = Tetrahedron cube (v3 t0) (v2 t0) (v1 t0) (v0 t0) +-- t1' = Tetrahedron cube (v3 t1) (v2 t1) (v0 t1) (v1 t1) diff --git a/src/Tests/FunctionValues.hs b/src/Tests/FunctionValues.hs new file mode 100644 index 0000000..ce9a351 --- /dev/null +++ b/src/Tests/FunctionValues.hs @@ -0,0 +1,64 @@ +module Tests.FunctionValues +where + +import Test.QuickCheck + +import FunctionValues + +instance Arbitrary FunctionValues where + arbitrary = do + front' <- arbitrary :: Gen Double + back' <- arbitrary :: Gen Double + left' <- arbitrary :: Gen Double + right' <- arbitrary :: Gen Double + top' <- arbitrary :: Gen Double + down' <- arbitrary :: Gen Double + front_left' <- arbitrary :: Gen Double + front_right' <- arbitrary :: Gen Double + front_top' <- arbitrary :: Gen Double + front_down' <- arbitrary :: Gen Double + back_left' <- arbitrary :: Gen Double + back_right' <- arbitrary :: Gen Double + back_top' <- arbitrary :: Gen Double + back_down' <- arbitrary :: Gen Double + left_top' <- arbitrary :: Gen Double + left_down' <- arbitrary :: Gen Double + right_top' <- arbitrary :: Gen Double + right_down' <- arbitrary :: Gen Double + front_left_top' <- arbitrary :: Gen Double + front_left_down' <- arbitrary :: Gen Double + front_right_top' <- arbitrary :: Gen Double + front_right_down' <- arbitrary :: Gen Double + back_left_top' <- arbitrary :: Gen Double + back_left_down' <- arbitrary :: Gen Double + back_right_top' <- arbitrary :: Gen Double + back_right_down' <- arbitrary :: Gen Double + interior' <- arbitrary :: Gen Double + + return empty_values { front = front', + back = back', + left = left', + right = right', + top = top', + down = down', + front_left = front_left', + front_right = front_right', + front_top = front_top', + front_down = front_down', + back_left = back_left', + back_right = back_right', + back_top = back_top', + back_down = back_down', + left_top = left_top', + left_down = left_down', + right_top = right_top', + right_down = right_down', + front_left_top = front_left_top', + front_left_down = front_left_down', + front_right_top = front_right_top', + front_right_down = front_right_down', + back_left_top = back_left_top', + back_left_down = back_left_down', + back_right_top = back_right_top', + back_right_down = back_right_down', + interior = interior' } diff --git a/src/Tests/Tetrahedron.hs b/src/Tests/Tetrahedron.hs index bc13876..d4b7b9b 100644 --- a/src/Tests/Tetrahedron.hs +++ b/src/Tests/Tetrahedron.hs @@ -5,20 +5,20 @@ import Test.HUnit import Test.QuickCheck import Comparisons -import Cube import Point -import Tests.Cube() +import FunctionValues +import Tests.FunctionValues() import Tetrahedron import ThreeDimensional instance Arbitrary Tetrahedron where arbitrary = do - rnd_c0 <- arbitrary :: Gen Cube rnd_v0 <- arbitrary :: Gen Point rnd_v1 <- arbitrary :: Gen Point rnd_v2 <- arbitrary :: Gen Point rnd_v3 <- arbitrary :: Gen Point - return (Tetrahedron rnd_c0 rnd_v0 rnd_v1 rnd_v2 rnd_v3) + rnd_fv <- arbitrary :: Gen FunctionValues + return (Tetrahedron rnd_fv rnd_v0 rnd_v1 rnd_v2 rnd_v3) -- HUnit Tests @@ -32,11 +32,11 @@ test_volume1 = p1 = (0, 0.5, 0) p2 = (2, 0, 0) p3 = (1, 0, 1) - t = Tetrahedron { cube = empty_cube, - v0 = p0, + t = Tetrahedron { v0 = p0, v1 = p1, v2 = p2, - v3 = p3 } + v3 = p3, + fv = empty_values } vol = volume t @@ -50,11 +50,11 @@ test_volume2 = p1 = (2, 0, 0) p2 = (0, 0.5, 0) p3 = (1, 0, 1) - t = Tetrahedron { cube = empty_cube, - v0 = p0, + t = Tetrahedron { v0 = p0, v1 = p1, v2 = p2, - v3 = p3 } + v3 = p3, + fv = empty_values } vol = volume t test_contains_point1 :: Test @@ -66,11 +66,11 @@ test_contains_point1 = p2 = (2, 0, 0) p3 = (1, 0, 1) inner_point = (1, 0, 0.5) - t = Tetrahedron { cube = empty_cube, - v0 = p0, + t = Tetrahedron { v0 = p0, v1 = p1, v2 = p2, - v3 = p3 } + v3 = p3, + fv = empty_values } test_doesnt_contain_point1 :: Test @@ -82,12 +82,11 @@ test_doesnt_contain_point1 = p2 = (2, 0, 0) p3 = (1, 0, 1) exterior_point = (5, 2, -9.0212) - c_empty = empty_cube - t = Tetrahedron { cube = c_empty, - v0 = p0, + t = Tetrahedron { v0 = p0, v1 = p1, v2 = p2, - v3 = p3 } + v3 = p3, + fv = empty_values } test_doesnt_contain_point2 :: Test @@ -99,12 +98,11 @@ test_doesnt_contain_point2 = p2 = (0.5, 0.5, 1) p3 = (0.5, 0.5, 0.5) exterior_point = (0, 0, 0) - c_empty = empty_cube - t = Tetrahedron { cube = c_empty, - v0 = p0, + t = Tetrahedron { v0 = p0, v1 = p1, v2 = p2, - v3 = p3 } + v3 = p3, + fv = empty_values } test_doesnt_contain_point3 :: Test test_doesnt_contain_point3 = @@ -115,12 +113,11 @@ test_doesnt_contain_point3 = p2 = (0.5, 0.5, 1) p3 = (0.5, 0.5, 0.5) exterior_point = (0, 0, 0) - c_empty = empty_cube - t = Tetrahedron { cube = c_empty, - v0 = p0, + t = Tetrahedron { v0 = p0, v1 = p1, v2 = p2, - v3 = p3 } + v3 = p3, + fv = empty_values } test_doesnt_contain_point4 :: Test test_doesnt_contain_point4 = @@ -131,12 +128,11 @@ test_doesnt_contain_point4 = p2 = (0.5, 0.5, 1) p3 = (0.5, 0.5, 0.5) exterior_point = (0, 0, 0) - c_empty = empty_cube - t = Tetrahedron { cube = c_empty, - v0 = p0, + t = Tetrahedron { v0 = p0, v1 = p1, v2 = p2, - v3 = p3 } + v3 = p3, + fv = empty_values } test_doesnt_contain_point5 :: Test test_doesnt_contain_point5 = @@ -147,12 +143,11 @@ test_doesnt_contain_point5 = p2 = (0.5, 0.5, 1) p3 = (0.5, 0.5, 0.5) exterior_point = (0, 0, 0) - c_empty = empty_cube - t = Tetrahedron { cube = c_empty, - v0 = p0, + t = Tetrahedron { v0 = p0, v1 = p1, v2 = p2, - v3 = p3 } + v3 = p3, + fv = empty_values } tetrahedron_tests :: [Test] tetrahedron_tests = [test_volume1,