From: Michael Orlitzky Date: Fri, 7 Dec 2018 15:07:13 +0000 (-0500) Subject: src/Linear/Matrix.hs: add support for zero-length columns/matrices. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=3274b18a2fb48f26e6582d9dcee11b4067230911;p=numerical-analysis.git src/Linear/Matrix.hs: add support for zero-length columns/matrices. --- diff --git a/src/Linear/Matrix.hs b/src/Linear/Matrix.hs index 4c2c7f3..e8d7180 100644 --- a/src/Linear/Matrix.hs +++ b/src/Linear/Matrix.hs @@ -20,6 +20,7 @@ import Data.List (intercalate) import Data.Vector.Fixed ( (!), generate, + mk0, mk1, mk2, mk3, @@ -27,13 +28,13 @@ import Data.Vector.Fixed ( mk5 ) import qualified Data.Vector.Fixed as V ( and, + foldl, fromList, head, ifoldl, ifoldr, imap, map, - maximum, replicate, reverse, toList, @@ -43,7 +44,9 @@ import Linear.Vector ( Vec, delete ) import Naturals import Normed ( Normed(..) ) -import NumericPrelude hiding ( (*), abs ) +-- We want the "max" that works on Ord, not the one that only works on +-- Bool/Integer from the Lattice class! +import NumericPrelude hiding ( (*), abs, max) import qualified NumericPrelude as NP ( (*) ) import qualified Algebra.Absolute as Absolute ( C ) import Algebra.Absolute ( abs ) @@ -56,12 +59,13 @@ import qualified Algebra.Module as Module ( C ) import qualified Algebra.RealRing as RealRing ( C ) import qualified Algebra.ToRational as ToRational ( C ) import qualified Algebra.Transcendental as Transcendental ( C ) -import qualified Prelude as P ( map ) +import qualified Prelude as P ( map, max) -- | Our main matrix type. data Mat m n a = (Arity m, Arity n) => Mat (Vec m (Vec n a)) -- Type synonyms for n-by-n matrices. +type Mat0 a = Mat Z Z a type Mat1 a = Mat N1 N1 a type Mat2 a = Mat N2 N2 a type Mat3 a = Mat N3 N3 a @@ -86,6 +90,7 @@ type Row5 a = Row N5 a -- | Type synonym for column vectors expressed as n-by-1 matrices. type Col n a = Mat n N1 a +type Col0 a = Col Z a type Col1 a = Col N1 a type Col2 a = Col N2 a type Col3 a = Col N3 a @@ -612,8 +617,8 @@ instance (Absolute.C a, Algebraic.C a, ToRational.C a, Arity m) - => Normed (Col (S m) a) where - -- | Generic p-norms for vectors in R^n that are represented as n-by-1 + => Normed (Col m a) where + -- | Generic p-norms for vectors in R^m that are represented as m-by-1 -- matrices. -- -- Examples: @@ -628,6 +633,10 @@ instance (Absolute.C a, -- >>> norm_p 1 v1 :: Double -- 2.0 -- + -- >>> let v1 = vec0d :: Col0 Double + -- >>> norm v1 + -- 0.0 + -- norm_p p (Mat rows) = (root p') $ sum [fromRational' (toRational $ abs x)^p' | x <- xs] where @@ -643,7 +652,8 @@ instance (Absolute.C a, -- 5 -- norm_infty (Mat rows) = - fromRational' $ toRational $ V.maximum $ V.map V.maximum rows + fromRational' $ toRational + $ (V.foldl P.max 0) $ V.map (V.foldl P.max 0) rows -- | Compute the Frobenius norm of a matrix. This essentially treats @@ -688,6 +698,9 @@ frobenius_norm matrix = -- >>> fixed_point g eps u0 -- ((1.0728549599342185),(1.0820591495686167)) -- +vec0d :: Col0 a +vec0d = Mat mk0 + vec1d :: (a) -> Col1 a vec1d (x) = Mat (mk1 (mk1 x))