From: Michael Orlitzky Date: Sun, 4 Sep 2011 13:02:47 +0000 (-0400) Subject: Fix the Cube tests re: the 'tetrahedron' change. X-Git-Tag: 0.0.1~162 X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=1f9335668ce3ebd6a6b82851a7f658d371071c97;p=spline3.git Fix the Cube tests re: the 'tetrahedron' change. --- diff --git a/src/Tests/Cube.hs b/src/Tests/Cube.hs index e9e21d6..92559e3 100644 --- a/src/Tests/Cube.hs +++ b/src/Tests/Cube.hs @@ -72,8 +72,8 @@ prop_c0120_identity1 :: Cube -> Bool prop_c0120_identity1 cube = c t0 0 1 2 0 ~= (c t0 0 0 2 1 + c t3 0 0 1 2) / 2 where - t0 = tetrahedron0 cube - t3 = tetrahedron3 cube + t0 = tetrahedron cube 0 + t3 = tetrahedron cube 3 -- | Given in Sorokina and Zeilfelder, p. 79, (2.6). Repeats @@ -82,8 +82,8 @@ prop_c0120_identity2 :: Cube -> Bool prop_c0120_identity2 cube = c t1 0 1 2 0 ~= (c t1 0 0 2 1 + c t0 0 0 1 2) / 2 where - t0 = tetrahedron0 cube - t1 = tetrahedron1 cube + t0 = tetrahedron cube 0 + t1 = tetrahedron cube 1 -- | Given in Sorokina and Zeilfelder, p. 79, (2.6). Repeats -- 'prop_c0120_identity1' with tetrahedrons 1 and 2. @@ -91,8 +91,8 @@ prop_c0120_identity3 :: Cube -> Bool prop_c0120_identity3 cube = c t2 0 1 2 0 ~= (c t2 0 0 2 1 + c t1 0 0 1 2) / 2 where - t1 = tetrahedron1 cube - t2 = tetrahedron2 cube + t1 = tetrahedron cube 1 + t2 = tetrahedron cube 2 -- | Given in Sorokina and Zeilfelder, p. 79, (2.6). Repeats -- 'prop_c0120_identity1' with tetrahedrons 2 and 3. @@ -100,8 +100,8 @@ prop_c0120_identity4 :: Cube -> Bool prop_c0120_identity4 cube = c t3 0 1 2 0 ~= (c t3 0 0 2 1 + c t2 0 0 1 2) / 2 where - t2 = tetrahedron2 cube - t3 = tetrahedron3 cube + t2 = tetrahedron cube 2 + t3 = tetrahedron cube 3 -- | Given in Sorokina and Zeilfelder, p. 79, (2.6). Repeats @@ -110,8 +110,8 @@ prop_c0120_identity5 :: Cube -> Bool prop_c0120_identity5 cube = c t5 0 1 2 0 ~= (c t5 0 0 2 1 + c t4 0 0 1 2) / 2 where - t4 = tetrahedron4 cube - t5 = tetrahedron5 cube + t4 = tetrahedron cube 4 + t5 = tetrahedron cube 5 -- -- | Given in Sorokina and Zeilfelder, p. 79, (2.6). Repeats -- -- 'prop_c0120_identity1' with tetrahedrons 5 and 6. @@ -119,8 +119,8 @@ prop_c0120_identity6 :: Cube -> Bool prop_c0120_identity6 cube = c t6 0 1 2 0 ~= (c t6 0 0 2 1 + c t5 0 0 1 2) / 2 where - t5 = tetrahedron5 cube - t6 = tetrahedron6 cube + t5 = tetrahedron cube 5 + t6 = tetrahedron cube 6 -- -- | Given in Sorokina and Zeilfelder, p. 79, (2.6). Repeats @@ -129,8 +129,8 @@ prop_c0120_identity7 :: Cube -> Bool prop_c0120_identity7 cube = c t7 0 1 2 0 ~= (c t7 0 0 2 1 + c t6 0 0 1 2) / 2 where - t6 = tetrahedron6 cube - t7 = tetrahedron7 cube + t6 = tetrahedron cube 6 + t7 = tetrahedron cube 7 -- | Given in Sorokina and Zeilfelder, p. 79, (2.6). See @@ -139,8 +139,8 @@ prop_c0210_identity1 :: Cube -> Bool prop_c0210_identity1 cube = c t0 0 2 1 0 ~= (c t0 0 1 1 1 + c t3 0 1 1 1) / 2 where - t0 = tetrahedron0 cube - t3 = tetrahedron3 cube + t0 = tetrahedron cube 0 + t3 = tetrahedron cube 3 -- | Given in Sorokina and Zeilfelder, p. 79, (2.6). See @@ -149,8 +149,8 @@ prop_c0300_identity1 :: Cube -> Bool prop_c0300_identity1 cube = c t0 0 3 0 0 ~= (c t0 0 2 0 1 + c t3 0 2 1 0) / 2 where - t0 = tetrahedron0 cube - t3 = tetrahedron3 cube + t0 = tetrahedron cube 0 + t3 = tetrahedron cube 3 -- | Given in Sorokina and Zeilfelder, p. 79, (2.6). See @@ -159,8 +159,8 @@ prop_c1110_identity :: Cube -> Bool prop_c1110_identity cube = c t0 1 1 1 0 ~= (c t0 1 0 1 1 + c t3 1 0 1 1) / 2 where - t0 = tetrahedron0 cube - t3 = tetrahedron3 cube + t0 = tetrahedron cube 0 + t3 = tetrahedron cube 3 -- | Given in Sorokina and Zeilfelder, p. 79, (2.6). See @@ -169,8 +169,8 @@ prop_c1200_identity1 :: Cube -> Bool prop_c1200_identity1 cube = c t0 1 2 0 0 ~= (c t0 1 1 0 1 + c t3 1 1 1 0) / 2 where - t0 = tetrahedron0 cube - t3 = tetrahedron3 cube + t0 = tetrahedron cube 0 + t3 = tetrahedron cube 3 -- | Given in Sorokina and Zeilfelder, p. 79, (2.6). See @@ -179,8 +179,8 @@ prop_c2100_identity1 :: Cube -> Bool prop_c2100_identity1 cube = c t0 2 1 0 0 ~= (c t0 2 0 0 1 + c t3 2 0 1 0) / 2 where - t0 = tetrahedron0 cube - t3 = tetrahedron3 cube + t0 = tetrahedron cube 0 + t3 = tetrahedron cube 3 @@ -194,8 +194,8 @@ prop_c0102_identity1 :: Cube -> Bool prop_c0102_identity1 cube = c t0 0 1 0 2 ~= (c t0 0 0 1 2 + c t1 0 0 2 1) / 2 where - t0 = tetrahedron0 cube - t1 = tetrahedron1 cube + t0 = tetrahedron cube 0 + t1 = tetrahedron cube 1 -- | Given in Sorokina and Zeilfelder, p. 79, (2.7). See @@ -204,8 +204,8 @@ prop_c0201_identity1 :: Cube -> Bool prop_c0201_identity1 cube = c t0 0 2 0 1 ~= (c t0 0 1 1 1 + c t1 0 1 1 1) / 2 where - t0 = tetrahedron0 cube - t1 = tetrahedron1 cube + t0 = tetrahedron cube 0 + t1 = tetrahedron cube 1 -- | Given in Sorokina and Zeilfelder, p. 79, (2.7). See @@ -214,8 +214,8 @@ prop_c0300_identity2 :: Cube -> Bool prop_c0300_identity2 cube = c t0 0 3 0 0 ~= (c t0 0 2 1 0 + c t1 0 2 0 1) / 2 where - t0 = tetrahedron0 cube - t1 = tetrahedron1 cube + t0 = tetrahedron cube 0 + t1 = tetrahedron cube 1 -- | Given in Sorokina and Zeilfelder, p. 79, (2.7). See @@ -224,8 +224,8 @@ prop_c1101_identity :: Cube -> Bool prop_c1101_identity cube = c t0 1 1 0 1 ~= (c t0 1 0 1 1 + c t1 1 0 1 1) / 2 where - t0 = tetrahedron0 cube - t1 = tetrahedron1 cube + t0 = tetrahedron cube 0 + t1 = tetrahedron cube 1 -- | Given in Sorokina and Zeilfelder, p. 79, (2.7). See @@ -234,8 +234,8 @@ prop_c1200_identity2 :: Cube -> Bool prop_c1200_identity2 cube = c t0 1 2 0 0 ~= (c t0 1 1 1 0 + c t1 1 1 0 1) / 2 where - t0 = tetrahedron0 cube - t1 = tetrahedron1 cube + t0 = tetrahedron cube 0 + t1 = tetrahedron cube 1 -- | Given in Sorokina and Zeilfelder, p. 79, (2.7). See @@ -244,8 +244,8 @@ prop_c2100_identity2 :: Cube -> Bool prop_c2100_identity2 cube = c t0 2 1 0 0 ~= (c t0 2 0 1 0 + c t1 2 0 0 1) / 2 where - t0 = tetrahedron0 cube - t1 = tetrahedron1 cube + t0 = tetrahedron cube 0 + t1 = tetrahedron cube 1 -- | Given in Sorokina and Zeilfelder, p. 79, (2.8). The third and @@ -259,8 +259,8 @@ prop_c3000_identity cube = c t0 3 0 0 0 ~= c t0 2 1 0 0 + c t6 2 1 0 0 - ((c t0 2 0 1 0 + c t0 2 0 0 1)/ 2) where - t0 = tetrahedron0 cube - t6 = tetrahedron6 cube + t0 = tetrahedron cube 0 + t6 = tetrahedron cube 6 -- | Given in Sorokina and Zeilfelder, p. 79, (2.8). See @@ -270,8 +270,8 @@ prop_c2010_identity cube = c t0 2 0 1 0 ~= c t0 1 1 1 0 + c t6 1 1 0 1 - ((c t0 1 0 2 0 + c t0 1 0 1 1)/ 2) where - t0 = tetrahedron0 cube - t6 = tetrahedron6 cube + t0 = tetrahedron cube 0 + t6 = tetrahedron cube 6 -- | Given in Sorokina and Zeilfelder, p. 79, (2.8). See @@ -281,8 +281,8 @@ prop_c2001_identity cube = c t0 2 0 0 1 ~= c t0 1 1 0 1 + c t6 1 1 1 0 - ((c t0 1 0 0 2 + c t0 1 0 1 1)/ 2) where - t0 = tetrahedron0 cube - t6 = tetrahedron6 cube + t0 = tetrahedron cube 0 + t6 = tetrahedron cube 6 -- | Given in Sorokina and Zeilfelder, p. 79, (2.8). See @@ -292,8 +292,8 @@ prop_c1020_identity cube = c t0 1 0 2 0 ~= c t0 0 1 2 0 + c t6 0 1 0 2 - ((c t0 0 0 3 0 + c t0 0 0 2 1)/ 2) where - t0 = tetrahedron0 cube - t6 = tetrahedron6 cube + t0 = tetrahedron cube 0 + t6 = tetrahedron cube 6 -- | Given in Sorokina and Zeilfelder, p. 79, (2.8). See @@ -303,8 +303,8 @@ prop_c1002_identity cube = c t0 1 0 0 2 ~= c t0 0 1 0 2 + c t6 0 1 2 0 - ((c t0 0 0 0 3 + c t0 0 0 1 2)/ 2) where - t0 = tetrahedron0 cube - t6 = tetrahedron6 cube + t0 = tetrahedron cube 0 + t6 = tetrahedron cube 6 -- | Given in Sorokina and Zeilfelder, p. 79, (2.8). See @@ -314,8 +314,8 @@ prop_c1011_identity cube = c t0 1 0 1 1 ~= c t0 0 1 1 1 + c t6 0 1 1 1 - ((c t0 0 0 1 2 + c t0 0 0 2 1)/ 2) where - t0 = tetrahedron0 cube - t6 = tetrahedron6 cube + t0 = tetrahedron cube 0 + t6 = tetrahedron cube 6 @@ -331,41 +331,15 @@ prop_cijk1_identity cube = k <- [0..2], i + j + k == 2] where - t0 = tetrahedron0 cube - t1 = tetrahedron1 cube + t0 = tetrahedron cube 0 + t1 = tetrahedron cube 1 --- | The function values at the interior should be the same for all tetrahedra. +-- | The function values at the interior should be the same for all +-- tetrahedra. prop_interior_values_all_identical :: Cube -> Bool prop_interior_values_all_identical cube = - all_equal [i0, i1, i2, i3, i4, i5, i6, i7, i8, - i9, i10, i11, i12, i13, i14, i15, i16, - i17, i18, i19, i20, i21, i22, i23] - where - i0 = eval (Tetrahedron.fv (tetrahedron0 cube)) I - i1 = eval (Tetrahedron.fv (tetrahedron1 cube)) I - i2 = eval (Tetrahedron.fv (tetrahedron2 cube)) I - i3 = eval (Tetrahedron.fv (tetrahedron3 cube)) I - i4 = eval (Tetrahedron.fv (tetrahedron4 cube)) I - i5 = eval (Tetrahedron.fv (tetrahedron5 cube)) I - i6 = eval (Tetrahedron.fv (tetrahedron6 cube)) I - i7 = eval (Tetrahedron.fv (tetrahedron7 cube)) I - i8 = eval (Tetrahedron.fv (tetrahedron8 cube)) I - i9 = eval (Tetrahedron.fv (tetrahedron9 cube)) I - i10 = eval (Tetrahedron.fv (tetrahedron10 cube)) I - i11 = eval (Tetrahedron.fv (tetrahedron11 cube)) I - i12 = eval (Tetrahedron.fv (tetrahedron12 cube)) I - i13 = eval (Tetrahedron.fv (tetrahedron13 cube)) I - i14 = eval (Tetrahedron.fv (tetrahedron14 cube)) I - i15 = eval (Tetrahedron.fv (tetrahedron15 cube)) I - i16 = eval (Tetrahedron.fv (tetrahedron16 cube)) I - i17 = eval (Tetrahedron.fv (tetrahedron17 cube)) I - i18 = eval (Tetrahedron.fv (tetrahedron18 cube)) I - i19 = eval (Tetrahedron.fv (tetrahedron19 cube)) I - i20 = eval (Tetrahedron.fv (tetrahedron20 cube)) I - i21 = eval (Tetrahedron.fv (tetrahedron21 cube)) I - i22 = eval (Tetrahedron.fv (tetrahedron22 cube)) I - i23 = eval (Tetrahedron.fv (tetrahedron23 cube)) I + all_equal [ eval (Tetrahedron.fv tet) I | tet <- tetrahedra cube ] -- | We know what (c t6 2 1 0 0) should be from Sorokina and Zeilfelder, p. 87. @@ -374,8 +348,8 @@ prop_c_tilde_2100_rotation_correct :: Cube -> Bool prop_c_tilde_2100_rotation_correct cube = expr1 == expr2 where - t0 = tetrahedron0 cube - t6 = tetrahedron6 cube + t0 = tetrahedron cube 0 + t6 = tetrahedron cube 6 -- What gets computed for c2100 of t6. expr1 = eval (Tetrahedron.fv t6) $ @@ -408,8 +382,8 @@ prop_c_tilde_2100_correct :: Cube -> Bool prop_c_tilde_2100_correct cube = c t6 2 1 0 0 == expected where - t0 = tetrahedron0 cube - t6 = tetrahedron6 cube + t0 = tetrahedron cube 0 + t6 = tetrahedron cube 6 fvs = Tetrahedron.fv t0 expected = eval fvs $ (3/8)*I + @@ -426,103 +400,103 @@ prop_t0_shares_edge_with_t1 :: Cube -> Bool prop_t0_shares_edge_with_t1 cube = (v1 t0) == (v1 t1) && (v3 t0) == (v2 t1) where - t0 = tetrahedron0 cube - t1 = tetrahedron1 cube + t0 = tetrahedron cube 0 + t1 = tetrahedron cube 1 prop_t0_shares_edge_with_t3 :: Cube -> Bool prop_t0_shares_edge_with_t3 cube = (v1 t0) == (v1 t3) && (v2 t0) == (v3 t3) where - t0 = tetrahedron0 cube - t3 = tetrahedron3 cube + t0 = tetrahedron cube 0 + t3 = tetrahedron cube 3 prop_t0_shares_edge_with_t6 :: Cube -> Bool prop_t0_shares_edge_with_t6 cube = (v2 t0) == (v3 t6) && (v3 t0) == (v2 t6) where - t0 = tetrahedron0 cube - t6 = tetrahedron6 cube + t0 = tetrahedron cube 0 + t6 = tetrahedron cube 6 prop_t1_shares_edge_with_t2 :: Cube -> Bool prop_t1_shares_edge_with_t2 cube = (v1 t1) == (v1 t2) && (v3 t1) == (v2 t2) where - t1 = tetrahedron1 cube - t2 = tetrahedron2 cube + t1 = tetrahedron cube 1 + t2 = tetrahedron cube 2 prop_t1_shares_edge_with_t19 :: Cube -> Bool prop_t1_shares_edge_with_t19 cube = (v2 t1) == (v3 t19) && (v3 t1) == (v2 t19) where - t1 = tetrahedron1 cube - t19 = tetrahedron19 cube + t1 = tetrahedron cube 1 + t19 = tetrahedron cube 19 prop_t2_shares_edge_with_t3 :: Cube -> Bool prop_t2_shares_edge_with_t3 cube = (v1 t1) == (v1 t2) && (v3 t1) == (v2 t2) where - t1 = tetrahedron1 cube - t2 = tetrahedron2 cube + t1 = tetrahedron cube 1 + t2 = tetrahedron cube 2 prop_t2_shares_edge_with_t12 :: Cube -> Bool prop_t2_shares_edge_with_t12 cube = (v2 t2) == (v3 t12) && (v3 t2) == (v2 t12) where - t2 = tetrahedron2 cube - t12 = tetrahedron12 cube + t2 = tetrahedron cube 2 + t12 = tetrahedron cube 12 prop_t3_shares_edge_with_t21 :: Cube -> Bool prop_t3_shares_edge_with_t21 cube = (v2 t3) == (v3 t21) && (v3 t3) == (v2 t21) where - t3 = tetrahedron3 cube - t21 = tetrahedron21 cube + t3 = tetrahedron cube 3 + t21 = tetrahedron cube 21 prop_t4_shares_edge_with_t5 :: Cube -> Bool prop_t4_shares_edge_with_t5 cube = (v1 t4) == (v1 t5) && (v3 t4) == (v2 t5) where - t4 = tetrahedron4 cube - t5 = tetrahedron5 cube + t4 = tetrahedron cube 4 + t5 = tetrahedron cube 5 prop_t4_shares_edge_with_t7 :: Cube -> Bool prop_t4_shares_edge_with_t7 cube = (v1 t4) == (v1 t7) && (v2 t4) == (v3 t7) where - t4 = tetrahedron4 cube - t7 = tetrahedron7 cube + t4 = tetrahedron cube 4 + t7 = tetrahedron cube 7 prop_t4_shares_edge_with_t10 :: Cube -> Bool prop_t4_shares_edge_with_t10 cube = (v2 t4) == (v3 t10) && (v3 t4) == (v2 t10) where - t4 = tetrahedron4 cube - t10 = tetrahedron10 cube + t4 = tetrahedron cube 4 + t10 = tetrahedron cube 10 prop_t5_shares_edge_with_t6 :: Cube -> Bool prop_t5_shares_edge_with_t6 cube = (v1 t5) == (v1 t6) && (v3 t5) == (v2 t6) where - t5 = tetrahedron5 cube - t6 = tetrahedron6 cube + t5 = tetrahedron cube 5 + t6 = tetrahedron cube 6 prop_t5_shares_edge_with_t16 :: Cube -> Bool prop_t5_shares_edge_with_t16 cube = (v2 t5) == (v3 t16) && (v3 t5) == (v2 t16) where - t5 = tetrahedron5 cube - t16 = tetrahedron16 cube + t5 = tetrahedron cube 5 + t16 = tetrahedron cube 16 prop_t6_shares_edge_with_t7 :: Cube -> Bool prop_t6_shares_edge_with_t7 cube = (v1 t6) == (v1 t7) && (v3 t6) == (v2 t7) where - t6 = tetrahedron6 cube - t7 = tetrahedron7 cube + t6 = tetrahedron cube 6 + t7 = tetrahedron cube 7 prop_t7_shares_edge_with_t20 :: Cube -> Bool prop_t7_shares_edge_with_t20 cube = (v2 t7) == (v3 t20) && (v2 t7) == (v3 t20) where - t7 = tetrahedron7 cube - t20 = tetrahedron20 cube + t7 = tetrahedron cube 7 + t20 = tetrahedron cube 20