From: Michael Orlitzky Date: Wed, 11 May 2011 21:13:05 +0000 (-0400) Subject: Add a test based on the computations on Sorokina and Zeilfelder, p. 87. X-Git-Tag: 0.0.1~291 X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=1ec27f638dc7a33a026fb1551dcf304cda3adfde;p=spline3.git Add a test based on the computations on Sorokina and Zeilfelder, p. 87. --- diff --git a/src/Tests/Cube.hs b/src/Tests/Cube.hs index 0f0e926..5846977 100644 --- a/src/Tests/Cube.hs +++ b/src/Tests/Cube.hs @@ -5,9 +5,9 @@ import Test.QuickCheck import Comparisons import Cube -import FunctionValues (FunctionValues) +import FunctionValues import Tests.FunctionValues () -import Tetrahedron (b0, b1, b2, b3, c, +import Tetrahedron (b0, b1, b2, b3, c, fv, v0, v1, v2, v3, volume) instance Arbitrary Cube where @@ -473,7 +473,7 @@ prop_c3000_identity cube = c t0 3 0 0 0 ~= c t0 2 1 0 0 + c t6 2 1 0 0 - ((c t0 2 0 1 0 + c t0 2 0 0 1)/ 2) where t0 = tetrahedron0 cube - t6 = tetrahedron6 cube + t6 = (tetrahedron6 cube) { v2 = (v3 t6), v3 = (v2 t6) } -- | Given in Sorokina and Zeilfelder, p. 79. @@ -537,6 +537,35 @@ prop_c1011_identity cube = -- t1 = tetrahedron1 cube +-- | We know what (c t6 2 1 0 0) should be from Sorokina and Zeilfelder, p. 87. +prop_c_tilde_2100_correct :: Cube -> Bool +prop_c_tilde_2100_correct cube = + c t6 2 1 0 0 == (3/8)*int + (1/12)*(f + r + l + b) + (1/64)*(ft + rt + lt + bt) + + (7/48)*t + (1/48)*d + (1/96)*(fr + fl + br + bl) + + (1/192)*(fd + rd + ld + bd) + where + t6 = tetrahedron6 cube + fvs = Tetrahedron.fv t6 + int = interior fvs + f = front fvs + r = right fvs + l = left fvs + b = back fvs + ft = front_top fvs + rt = right_top fvs + lt = left_top fvs + bt = back_top fvs + t = top fvs + d = down fvs + fr = front_right fvs + fl = front_left fvs + br = back_right fvs + bl = back_left fvs + fd = front_down fvs + rd = right_down fvs + ld = left_down fvs + bd = back_down fvs + -- Tests to check that the correct edges are incidental. prop_t0_shares_edge_with_t1 :: Cube -> Bool prop_t0_shares_edge_with_t1 cube =