From: Michael Orlitzky Date: Thu, 1 Nov 2018 19:53:07 +0000 (-0400) Subject: mjo/cone/symmetric_psd.py: fix tests with PYTHONPATH="." X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=14b952fe32ba20b7bac685da07633b2ce5b5a5af;p=sage.d.git mjo/cone/symmetric_psd.py: fix tests with PYTHONPATH="." --- diff --git a/mjo/cone/symmetric_psd.py b/mjo/cone/symmetric_psd.py index e4be629..ef5d477 100644 --- a/mjo/cone/symmetric_psd.py +++ b/mjo/cone/symmetric_psd.py @@ -20,6 +20,10 @@ def is_symmetric_psd(A): Either ``True`` if ``A`` is symmetric positive-semidefinite, or ``False`` otherwise. + SETUP:: + + sage: from mjo.cone.symmetric_psd import is_symmetric_psd + EXAMPLES: Every completely positive matrix is symmetric @@ -72,6 +76,10 @@ def unit_eigenvectors(A): A list of (eigenvalue, eigenvector) pairs where each eigenvector is associated with its paired eigenvalue of ``A`` and has norm `1`. + SETUP:: + + sage: from mjo.cone.symmetric_psd import unit_eigenvectors + EXAMPLES:: sage: A = matrix(QQ, [[0, 2, 3], [2, 0, 0], [3, 0, 0]]) @@ -137,6 +145,10 @@ def factor_psd(A): `$D$` will have dimension `$k \times k$`. In the end everything works out the same. + SETUP:: + + sage: from mjo.cone.symmetric_psd import factor_psd + EXAMPLES: Create a symmetric positive-semidefinite matrix over the symbolic @@ -233,6 +245,10 @@ def random_psd(V, accept_zero=True, rank=None): ``accept_zero`` is ``False``, we restart the process from the beginning. + SETUP:: + + sage: from mjo.cone.symmetric_psd import is_symmetric_psd, random_psd + EXAMPLES: Well, it doesn't crash at least::