From: Michael Orlitzky Date: Wed, 7 Aug 2019 00:09:09 +0000 (-0400) Subject: eja: rewrite the hacky process used for characteristic polynomials. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=13a49fd59d57cf34b026460ace004ddbd60d4b68;p=sage.d.git eja: rewrite the hacky process used for characteristic polynomials. --- diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index a9bb6c7..3855f0e 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -259,16 +259,34 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): r = self.rank() n = self.dimension() - # Construct a new algebra over a multivariate polynomial ring... + # Turn my vector space into a module so that "vectors" can + # have multivatiate polynomial entries. names = tuple('X' + str(i) for i in range(1,n+1)) R = PolynomialRing(self.base_ring(), names) - # Hack around the fact that our multiplication table is in terms of - # algebra elements but the constructor wants it in terms of vectors. - vmt = [ tuple(map(lambda x: x.to_vector(), ls)) - for ls in self._multiplication_table ] - J = FiniteDimensionalEuclideanJordanAlgebra(R, tuple(vmt), r) - - idmat = matrix.identity(J.base_ring(), n) + V = self.vector_space().change_ring(R) + + # Now let x = (X1,X2,...,Xn) be the vector whose entries are + # indeterminates... + x = V(names) + + # And figure out the "left multiplication by x" matrix in + # that setting. + lmbx_cols = [] + monomial_matrices = [ self.monomial(i).operator().matrix() + for i in range(n) ] # don't recompute these! + for k in range(n): + ek = self.monomial(k).to_vector() + lmbx_cols.append( + sum( x[i]*(monomial_matrices[i]*ek) + for i in range(n) ) ) + Lx = matrix.column(R, lmbx_cols) + + # Now we can compute powers of x "symbolically" + x_powers = [self.one().to_vector(), x] + for d in range(2, r+1): + x_powers.append( Lx*(x_powers[-1]) ) + + idmat = matrix.identity(R, n) W = self._charpoly_basis_space() W = W.change_ring(R.fraction_field()) @@ -288,18 +306,10 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): # We want the middle equivalent thing in our matrix, but use # the first equivalent thing instead so that we can pass in # standard coordinates. - x = J.from_vector(W(R.gens())) - - # Handle the zeroth power separately, because computing - # the unit element in J is mathematically suspect. - x0 = W.coordinate_vector(self.one().to_vector()) - l1 = [ x0.column() ] - l1 += [ W.coordinate_vector((x**k).to_vector()).column() - for k in range(1,r) ] - l2 = [idmat.column(k-1).column() for k in range(r+1, n+1)] - A_of_x = matrix.block(R, 1, n, (l1 + l2)) - xr = W.coordinate_vector((x**r).to_vector()) - return (A_of_x, x, xr, A_of_x.det()) + x_powers = [ W.coordinate_vector(xp) for xp in x_powers ] + l2 = [idmat.column(k-1) for k in range(r+1, n+1)] + A_of_x = matrix.column(R, n, (x_powers[:r] + l2)) + return (A_of_x, x, x_powers[r], A_of_x.det()) @cached_method