From: Michael Orlitzky Date: Fri, 26 Oct 2012 01:07:12 +0000 (-0400) Subject: Add the divided_difference() and newton_polynomial() functions to interpolation.py. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=0f5a866077886101e88d89eb24d8902a4a2e508a;p=sage.d.git Add the divided_difference() and newton_polynomial() functions to interpolation.py. --- diff --git a/mjo/interpolation.py b/mjo/interpolation.py index e3e6933..747c680 100644 --- a/mjo/interpolation.py +++ b/mjo/interpolation.py @@ -71,3 +71,93 @@ def lagrange_polynomial(f, x, xs): ls = [ lagrange_coefficient(k, x, xs) for k in range(0, len(xs)) ] sigma = sum([ ys[k] * ls[k] for k in range(0, len(xs)) ]) return sigma + + +def divided_difference(f, xs): + """ + Return the Newton divided difference of `f` at the points + `xs`. Reference: + + http://en.wikipedia.org/wiki/Divided_differences + + INPUT: + + - ``f`` -- The function whose divided difference we seek. + + - ``xs`` -- The list of points at which to compute `f`. + + OUTPUT: + + The divided difference of `f` at ``xs``. + + TESTS:: + + sage: divided_difference(sin, [0]) + 0 + sage: divided_difference(sin, [0, pi]) + 0 + sage: divided_difference(sin, [0, pi, 2*pi]) + 0 + + We try something entirely symbolic:: + + sage: f = function('f', x) + sage: divided_difference(f, [x]) + f(x) + sage: x1,x2 = var('x1,x2') + sage: divided_difference(f, [x1,x2]) + (f(x1) - f(x2))/(x1 - x2) + + """ + if (len(xs) == 1): + # Avoid that goddamned DeprecationWarning when we have a named + # argument but don't know what it is. + if len(f.variables()) == 0: + return f(xs[0]) + else: + v = f.variables()[0] + return f({ v: xs[0] }) + + # Use the recursive definition. + numerator = divided_difference(f, xs[1:]) + numerator -= divided_difference(f, xs[:-1]) + return numerator / (xs[-1] - xs[0]) + + +def newton_polynomial(f, x, xs): + """ + Return the Newton form of the interpolating polynomial of `f` at + the points `xs` in the variable `x`. + + INPUT: + + - ``f`` -- The function to interpolate. + + - ``x`` -- The independent variable to use for the interpolating + polynomial. + + - ``xs`` -- The list of points at which to interpolate `f`. + + OUTPUT: + + A symbolic function. + + TESTS: + + sage: xs = [ -pi/2, -pi/6, 0, pi/6, pi/2 ] + sage: L = lagrange_polynomial(sin, x, xs) + sage: N = newton_polynomial(sin, x, xs) + sage: bool(N == L) + True + + """ + degree = len(xs) - 1 + + N = SR(0) + + for k in range(0, degree+1): + term = divided_difference(f, xs[:k+1]) + term *= product([ x - xk for xk in xs[:k]]) + N += term + + return N