From: Michael Orlitzky Date: Fri, 9 Aug 2019 19:22:14 +0000 (-0400) Subject: eja: add is_trivial() method and special cases for trivial algebras. X-Git-Url: https://gitweb.michael.orlitzky.com/?a=commitdiff_plain;h=02c754829b2f2e8378561e6afd7cbfab2577f3f4;p=sage.d.git eja: add is_trivial() method and special cases for trivial algebras. --- diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index 580c923..832e7a1 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -404,6 +404,29 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): return x.trace_inner_product(y) + def is_trivial(self): + """ + Return whether or not this algebra is trivial. + + A trivial algebra contains only the zero element. + + SETUP:: + + sage: from mjo.eja.eja_algebra import ComplexHermitianEJA + + EXAMPLES:: + + sage: J = ComplexHermitianEJA(3) + sage: J.is_trivial() + False + sage: A = J.zero().subalgebra_generated_by() + sage: A.is_trivial() + True + + """ + return self.dimension() == 0 + + def multiplication_table(self): """ Return a visual representation of this algebra's multiplication @@ -546,6 +569,15 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): return self.linear_combination(zip(self.gens(), coeffs)) + def random_element(self): + # Temporary workaround for https://trac.sagemath.org/ticket/28327 + if self.is_trivial(): + return self.zero() + else: + s = super(FiniteDimensionalEuclideanJordanAlgebra, self) + return s.random_element() + + def rank(self): """ Return the rank of this EJA. diff --git a/mjo/eja/eja_element.py b/mjo/eja/eja_element.py index 97c048d..c47156d 100644 --- a/mjo/eja/eja_element.py +++ b/mjo/eja/eja_element.py @@ -482,14 +482,20 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): sage: J.one().is_invertible() True - The zero element is never invertible:: + The zero element is never invertible in a non-trivial algebra:: sage: set_random_seed() sage: J = random_eja() - sage: J.zero().is_invertible() + sage: (not J.is_trivial()) and J.zero().is_invertible() False """ + if self.is_zero(): + if self.parent().is_trivial(): + return True + else: + return False + # In fact, we only need to know if the constant term is non-zero, # so we can pass in the field's zero element instead. zero = self.base_ring().zero() @@ -645,6 +651,11 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): True """ + if self.is_zero() and not self.parent().is_trivial(): + # The minimal polynomial of zero in a nontrivial algebra + # is "t"; in a trivial algebra it's "1" by convention + # (it's an empty product). + return 1 return self.subalgebra_generated_by().dimension() @@ -723,6 +734,18 @@ class FiniteDimensionalEuclideanJordanAlgebraElement(IndexedFreeModuleElement): 0 """ + if self.is_zero(): + # We would generate a zero-dimensional subalgebra + # where the minimal polynomial would be constant. + # That might be correct, but only if *this* algebra + # is trivial too. + if not self.parent().is_trivial(): + # Pretty sure we know what the minimal polynomial of + # the zero operator is going to be. This ensures + # consistency of e.g. the polynomial variable returned + # in the "normal" case without us having to think about it. + return self.operator().minimal_polynomial() + A = self.subalgebra_generated_by() return A(self).operator().minimal_polynomial()