]> gitweb.michael.orlitzky.com - sage.d.git/commitdiff
eja: factor out the EJA element class into its own module.
authorMichael Orlitzky <michael@orlitzky.com>
Tue, 30 Jul 2019 00:31:33 +0000 (20:31 -0400)
committerMichael Orlitzky <michael@orlitzky.com>
Tue, 30 Jul 2019 00:31:33 +0000 (20:31 -0400)
mjo/eja/eja_algebra.py
mjo/eja/eja_element.py [new file with mode: 0644]
mjo/eja/eja_utils.py [new file with mode: 0644]

index ad2afbda465ca37bb1f0e940b8e5fb72b89cdba0..fb840edb93ed564c7372eacac2e3b9913a4a2350 100644 (file)
@@ -5,18 +5,13 @@ are used in optimization, and have some additional nice methods beyond
 what can be supported in a general Jordan Algebra.
 """
 
-
-
 from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra import FiniteDimensionalAlgebra
-from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement
 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
 from sage.categories.finite_dimensional_algebras_with_basis import FiniteDimensionalAlgebrasWithBasis
-from sage.functions.other import sqrt
 from sage.matrix.constructor import matrix
 from sage.misc.cachefunc import cached_method
 from sage.misc.prandom import choice
 from sage.modules.free_module import VectorSpace
-from sage.modules.free_module_element import vector
 from sage.rings.integer_ring import ZZ
 from sage.rings.number_field.number_field import QuadraticField
 from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
@@ -24,8 +19,8 @@ from sage.rings.rational_field import QQ
 from sage.structure.element import is_Matrix
 from sage.structure.category_object import normalize_names
 
-from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
-
+from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
+from mjo.eja.eja_utils import _vec2mat, _mat2vec
 
 class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
     @staticmethod
@@ -56,7 +51,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         return fda.__classcall__(cls,
                                  field,
                                  mult_table,
-                                 rank=rank,
+                                 rank,
                                  assume_associative=assume_associative,
                                  names=names,
                                  category=cat,
@@ -214,7 +209,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         R = PolynomialRing(self.base_ring(), names)
         J = FiniteDimensionalEuclideanJordanAlgebra(R,
                                                     self._multiplication_table,
-                                                    rank=r)
+                                                    r)
 
         idmat = matrix.identity(J.base_ring(), n)
 
@@ -461,1236 +456,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
         return self.zero().vector().parent().ambient_vector_space()
 
 
-    class Element(FiniteDimensionalAlgebraElement):
-        """
-        An element of a Euclidean Jordan algebra.
-        """
-
-        def __dir__(self):
-            """
-            Oh man, I should not be doing this. This hides the "disabled"
-            methods ``left_matrix`` and ``matrix`` from introspection;
-            in particular it removes them from tab-completion.
-            """
-            return filter(lambda s: s not in ['left_matrix', 'matrix'],
-                          dir(self.__class__) )
-
-
-        def __init__(self, A, elt=None):
-            """
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
-                ....:                                  random_eja)
-
-            EXAMPLES:
-
-            The identity in `S^n` is converted to the identity in the EJA::
-
-                sage: J = RealSymmetricEJA(3)
-                sage: I = matrix.identity(QQ,3)
-                sage: J(I) == J.one()
-                True
-
-            This skew-symmetric matrix can't be represented in the EJA::
-
-                sage: J = RealSymmetricEJA(3)
-                sage: A = matrix(QQ,3, lambda i,j: i-j)
-                sage: J(A)
-                Traceback (most recent call last):
-                ...
-                ArithmeticError: vector is not in free module
-
-            TESTS:
-
-            Ensure that we can convert any element of the parent's
-            underlying vector space back into an algebra element whose
-            vector representation is what we started with::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: v = J.vector_space().random_element()
-                sage: J(v).vector() == v
-                True
-
-            """
-            # Goal: if we're given a matrix, and if it lives in our
-            # parent algebra's "natural ambient space," convert it
-            # into an algebra element.
-            #
-            # The catch is, we make a recursive call after converting
-            # the given matrix into a vector that lives in the algebra.
-            # This we need to try the parent class initializer first,
-            # to avoid recursing forever if we're given something that
-            # already fits into the algebra, but also happens to live
-            # in the parent's "natural ambient space" (this happens with
-            # vectors in R^n).
-            try:
-                FiniteDimensionalAlgebraElement.__init__(self, A, elt)
-            except ValueError:
-                natural_basis = A.natural_basis()
-                if elt in natural_basis[0].matrix_space():
-                    # Thanks for nothing! Matrix spaces aren't vector
-                    # spaces in Sage, so we have to figure out its
-                    # natural-basis coordinates ourselves.
-                    V = VectorSpace(elt.base_ring(), elt.nrows()**2)
-                    W = V.span( _mat2vec(s) for s in natural_basis )
-                    coords =  W.coordinates(_mat2vec(elt))
-                    FiniteDimensionalAlgebraElement.__init__(self, A, coords)
-
-        def __pow__(self, n):
-            """
-            Return ``self`` raised to the power ``n``.
-
-            Jordan algebras are always power-associative; see for
-            example Faraut and Koranyi, Proposition II.1.2 (ii).
-
-            We have to override this because our superclass uses row
-            vectors instead of column vectors! We, on the other hand,
-            assume column vectors everywhere.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            TESTS:
-
-            The definition of `x^2` is the unambiguous `x*x`::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x*x == (x^2)
-                True
-
-            A few examples of power-associativity::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x*(x*x)*(x*x) == x^5
-                True
-                sage: (x*x)*(x*x*x) == x^5
-                True
-
-            We also know that powers operator-commute (Koecher, Chapter
-            III, Corollary 1)::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: m = ZZ.random_element(0,10)
-                sage: n = ZZ.random_element(0,10)
-                sage: Lxm = (x^m).operator()
-                sage: Lxn = (x^n).operator()
-                sage: Lxm*Lxn == Lxn*Lxm
-                True
-
-            """
-            if n == 0:
-                return self.parent().one()
-            elif n == 1:
-                return self
-            else:
-                return (self.operator()**(n-1))(self)
-
-
-        def apply_univariate_polynomial(self, p):
-            """
-            Apply the univariate polynomial ``p`` to this element.
-
-            A priori, SageMath won't allow us to apply a univariate
-            polynomial to an element of an EJA, because we don't know
-            that EJAs are rings (they are usually not associative). Of
-            course, we know that EJAs are power-associative, so the
-            operation is ultimately kosher. This function sidesteps
-            the CAS to get the answer we want and expect.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
-                ....:                                  random_eja)
-
-            EXAMPLES::
-
-                sage: R = PolynomialRing(QQ, 't')
-                sage: t = R.gen(0)
-                sage: p = t^4 - t^3 + 5*t - 2
-                sage: J = RealCartesianProductEJA(5)
-                sage: J.one().apply_univariate_polynomial(p) == 3*J.one()
-                True
-
-            TESTS:
-
-            We should always get back an element of the algebra::
-
-                sage: set_random_seed()
-                sage: p = PolynomialRing(QQ, 't').random_element()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: x.apply_univariate_polynomial(p) in J
-                True
-
-            """
-            if len(p.variables()) > 1:
-                raise ValueError("not a univariate polynomial")
-            P = self.parent()
-            R = P.base_ring()
-            # Convert the coeficcients to the parent's base ring,
-            # because a priori they might live in an (unnecessarily)
-            # larger ring for which P.sum() would fail below.
-            cs = [ R(c) for c in p.coefficients(sparse=False) ]
-            return P.sum( cs[k]*(self**k) for k in range(len(cs)) )
-
-
-        def characteristic_polynomial(self):
-            """
-            Return the characteristic polynomial of this element.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import RealCartesianProductEJA
-
-            EXAMPLES:
-
-            The rank of `R^3` is three, and the minimal polynomial of
-            the identity element is `(t-1)` from which it follows that
-            the characteristic polynomial should be `(t-1)^3`::
-
-                sage: J = RealCartesianProductEJA(3)
-                sage: J.one().characteristic_polynomial()
-                t^3 - 3*t^2 + 3*t - 1
-
-            Likewise, the characteristic of the zero element in the
-            rank-three algebra `R^{n}` should be `t^{3}`::
-
-                sage: J = RealCartesianProductEJA(3)
-                sage: J.zero().characteristic_polynomial()
-                t^3
-
-            TESTS:
-
-            The characteristic polynomial of an element should evaluate
-            to zero on that element::
-
-                sage: set_random_seed()
-                sage: x = RealCartesianProductEJA(3).random_element()
-                sage: p = x.characteristic_polynomial()
-                sage: x.apply_univariate_polynomial(p)
-                0
-
-            """
-            p = self.parent().characteristic_polynomial()
-            return p(*self.vector())
-
-
-        def inner_product(self, other):
-            """
-            Return the parent algebra's inner product of myself and ``other``.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (
-                ....:   ComplexHermitianEJA,
-                ....:   JordanSpinEJA,
-                ....:   QuaternionHermitianEJA,
-                ....:   RealSymmetricEJA,
-                ....:   random_eja)
-
-            EXAMPLES:
-
-            The inner product in the Jordan spin algebra is the usual
-            inner product on `R^n` (this example only works because the
-            basis for the Jordan algebra is the standard basis in `R^n`)::
-
-                sage: J = JordanSpinEJA(3)
-                sage: x = vector(QQ,[1,2,3])
-                sage: y = vector(QQ,[4,5,6])
-                sage: x.inner_product(y)
-                32
-                sage: J(x).inner_product(J(y))
-                32
-
-            The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
-            multiplication is the usual matrix multiplication in `S^n`,
-            so the inner product of the identity matrix with itself
-            should be the `n`::
-
-                sage: J = RealSymmetricEJA(3)
-                sage: J.one().inner_product(J.one())
-                3
-
-            Likewise, the inner product on `C^n` is `<X,Y> =
-            Re(trace(X*Y))`, where we must necessarily take the real
-            part because the product of Hermitian matrices may not be
-            Hermitian::
-
-                sage: J = ComplexHermitianEJA(3)
-                sage: J.one().inner_product(J.one())
-                3
-
-            Ditto for the quaternions::
-
-                sage: J = QuaternionHermitianEJA(3)
-                sage: J.one().inner_product(J.one())
-                3
-
-            TESTS:
-
-            Ensure that we can always compute an inner product, and that
-            it gives us back a real number::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: x.inner_product(y) in RR
-                True
-
-            """
-            P = self.parent()
-            if not other in P:
-                raise TypeError("'other' must live in the same algebra")
-
-            return P.inner_product(self, other)
-
-
-        def operator_commutes_with(self, other):
-            """
-            Return whether or not this element operator-commutes
-            with ``other``.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            EXAMPLES:
-
-            The definition of a Jordan algebra says that any element
-            operator-commutes with its square::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x.operator_commutes_with(x^2)
-                True
-
-            TESTS:
-
-            Test Lemma 1 from Chapter III of Koecher::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: u = J.random_element()
-                sage: v = J.random_element()
-                sage: lhs = u.operator_commutes_with(u*v)
-                sage: rhs = v.operator_commutes_with(u^2)
-                sage: lhs == rhs
-                True
-
-            Test the first polarization identity from my notes, Koecher
-            Chapter III, or from Baes (2.3)::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: Lx = x.operator()
-                sage: Ly = y.operator()
-                sage: Lxx = (x*x).operator()
-                sage: Lxy = (x*y).operator()
-                sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
-                True
-
-            Test the second polarization identity from my notes or from
-            Baes (2.4)::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: z = J.random_element()
-                sage: Lx = x.operator()
-                sage: Ly = y.operator()
-                sage: Lz = z.operator()
-                sage: Lzy = (z*y).operator()
-                sage: Lxy = (x*y).operator()
-                sage: Lxz = (x*z).operator()
-                sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
-                True
-
-            Test the third polarization identity from my notes or from
-            Baes (2.5)::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: u = J.random_element()
-                sage: y = J.random_element()
-                sage: z = J.random_element()
-                sage: Lu = u.operator()
-                sage: Ly = y.operator()
-                sage: Lz = z.operator()
-                sage: Lzy = (z*y).operator()
-                sage: Luy = (u*y).operator()
-                sage: Luz = (u*z).operator()
-                sage: Luyz = (u*(y*z)).operator()
-                sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
-                sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
-                sage: bool(lhs == rhs)
-                True
-
-            """
-            if not other in self.parent():
-                raise TypeError("'other' must live in the same algebra")
-
-            A = self.operator()
-            B = other.operator()
-            return (A*B == B*A)
-
-
-        def det(self):
-            """
-            Return my determinant, the product of my eigenvalues.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  random_eja)
-
-            EXAMPLES::
-
-                sage: J = JordanSpinEJA(2)
-                sage: e0,e1 = J.gens()
-                sage: x = sum( J.gens() )
-                sage: x.det()
-                0
-
-            ::
-
-                sage: J = JordanSpinEJA(3)
-                sage: e0,e1,e2 = J.gens()
-                sage: x = sum( J.gens() )
-                sage: x.det()
-                -1
-
-            TESTS:
-
-            An element is invertible if and only if its determinant is
-            non-zero::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x.is_invertible() == (x.det() != 0)
-                True
-
-            """
-            P = self.parent()
-            r = P.rank()
-            p = P._charpoly_coeff(0)
-            # The _charpoly_coeff function already adds the factor of
-            # -1 to ensure that _charpoly_coeff(0) is really what
-            # appears in front of t^{0} in the charpoly. However,
-            # we want (-1)^r times THAT for the determinant.
-            return ((-1)**r)*p(*self.vector())
-
-
-        def inverse(self):
-            """
-            Return the Jordan-multiplicative inverse of this element.
-
-            ALGORITHM:
-
-            We appeal to the quadratic representation as in Koecher's
-            Theorem 12 in Chapter III, Section 5.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  random_eja)
-
-            EXAMPLES:
-
-            The inverse in the spin factor algebra is given in Alizadeh's
-            Example 11.11::
-
-                sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10)
-                sage: J = JordanSpinEJA(n)
-                sage: x = J.random_element()
-                sage: while not x.is_invertible():
-                ....:     x = J.random_element()
-                sage: x_vec = x.vector()
-                sage: x0 = x_vec[0]
-                sage: x_bar = x_vec[1:]
-                sage: coeff = ~(x0^2 - x_bar.inner_product(x_bar))
-                sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
-                sage: x_inverse = coeff*inv_vec
-                sage: x.inverse() == J(x_inverse)
-                True
-
-            TESTS:
-
-            The identity element is its own inverse::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.one().inverse() == J.one()
-                True
-
-            If an element has an inverse, it acts like one::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: (not x.is_invertible()) or (x.inverse()*x == J.one())
-                True
-
-            The inverse of the inverse is what we started with::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: (not x.is_invertible()) or (x.inverse().inverse() == x)
-                True
-
-            The zero element is never invertible::
-
-                sage: set_random_seed()
-                sage: J = random_eja().zero().inverse()
-                Traceback (most recent call last):
-                ...
-                ValueError: element is not invertible
-
-            """
-            if not self.is_invertible():
-                raise ValueError("element is not invertible")
-
-            return (~self.quadratic_representation())(self)
-
-
-        def is_invertible(self):
-            """
-            Return whether or not this element is invertible.
-
-            ALGORITHM:
-
-            The usual way to do this is to check if the determinant is
-            zero, but we need the characteristic polynomial for the
-            determinant. The minimal polynomial is a lot easier to get,
-            so we use Corollary 2 in Chapter V of Koecher to check
-            whether or not the paren't algebra's zero element is a root
-            of this element's minimal polynomial.
-
-            Beware that we can't use the superclass method, because it
-            relies on the algebra being associative.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            TESTS:
-
-            The identity element is always invertible::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.one().is_invertible()
-                True
-
-            The zero element is never invertible::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.zero().is_invertible()
-                False
-
-            """
-            zero = self.parent().zero()
-            p = self.minimal_polynomial()
-            return not (p(zero) == zero)
-
-
-        def is_nilpotent(self):
-            """
-            Return whether or not some power of this element is zero.
-
-            ALGORITHM:
-
-            We use Theorem 5 in Chapter III of Koecher, which says that
-            an element ``x`` is nilpotent if and only if ``x.operator()``
-            is nilpotent. And it is a basic fact of linear algebra that
-            an operator on an `n`-dimensional space is nilpotent if and
-            only if, when raised to the `n`th power, it equals the zero
-            operator (for example, see Axler Corollary 8.8).
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  random_eja)
-
-            EXAMPLES::
-
-                sage: J = JordanSpinEJA(3)
-                sage: x = sum(J.gens())
-                sage: x.is_nilpotent()
-                False
-
-            TESTS:
-
-            The identity element is never nilpotent::
-
-                sage: set_random_seed()
-                sage: random_eja().one().is_nilpotent()
-                False
-
-            The additive identity is always nilpotent::
-
-                sage: set_random_seed()
-                sage: random_eja().zero().is_nilpotent()
-                True
-
-            """
-            P = self.parent()
-            zero_operator = P.zero().operator()
-            return self.operator()**P.dimension() == zero_operator
-
-
-        def is_regular(self):
-            """
-            Return whether or not this is a regular element.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  random_eja)
-
-            EXAMPLES:
-
-            The identity element always has degree one, but any element
-            linearly-independent from it is regular::
-
-                sage: J = JordanSpinEJA(5)
-                sage: J.one().is_regular()
-                False
-                sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
-                sage: for x in J.gens():
-                ....:     (J.one() + x).is_regular()
-                False
-                True
-                True
-                True
-                True
-
-            TESTS:
-
-            The zero element should never be regular::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.zero().is_regular()
-                False
-
-            The unit element isn't regular unless the algebra happens to
-            consist of only its scalar multiples::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.dimension() == 1 or not J.one().is_regular()
-                True
-
-            """
-            return self.degree() == self.parent().rank()
-
-
-        def degree(self):
-            """
-            Return the degree of this element, which is defined to be
-            the degree of its minimal polynomial.
-
-            ALGORITHM:
-
-            For now, we skip the messy minimal polynomial computation
-            and instead return the dimension of the vector space spanned
-            by the powers of this element. The latter is a bit more
-            straightforward to compute.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  random_eja)
-
-            EXAMPLES::
-
-                sage: J = JordanSpinEJA(4)
-                sage: J.one().degree()
-                1
-                sage: e0,e1,e2,e3 = J.gens()
-                sage: (e0 - e1).degree()
-                2
-
-            In the spin factor algebra (of rank two), all elements that
-            aren't multiples of the identity are regular::
-
-                sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10)
-                sage: J = JordanSpinEJA(n)
-                sage: x = J.random_element()
-                sage: x == x.coefficient(0)*J.one() or x.degree() == 2
-                True
-
-            TESTS:
-
-            The zero and unit elements are both of degree one::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.zero().degree()
-                1
-                sage: J.one().degree()
-                1
-
-            Our implementation agrees with the definition::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x.degree() == x.minimal_polynomial().degree()
-                True
-
-            """
-            return self.span_of_powers().dimension()
-
-
-        def left_matrix(self):
-            """
-            Our parent class defines ``left_matrix`` and ``matrix``
-            methods whose names are misleading. We don't want them.
-            """
-            raise NotImplementedError("use operator().matrix() instead")
-
-        matrix = left_matrix
-
-
-        def minimal_polynomial(self):
-            """
-            Return the minimal polynomial of this element,
-            as a function of the variable `t`.
-
-            ALGORITHM:
-
-            We restrict ourselves to the associative subalgebra
-            generated by this element, and then return the minimal
-            polynomial of this element's operator matrix (in that
-            subalgebra). This works by Baes Proposition 2.3.16.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  random_eja)
-
-            TESTS:
-
-            The minimal polynomial of the identity and zero elements are
-            always the same::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.one().minimal_polynomial()
-                t - 1
-                sage: J.zero().minimal_polynomial()
-                t
-
-            The degree of an element is (by one definition) the degree
-            of its minimal polynomial::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x.degree() == x.minimal_polynomial().degree()
-                True
-
-            The minimal polynomial and the characteristic polynomial coincide
-            and are known (see Alizadeh, Example 11.11) for all elements of
-            the spin factor algebra that aren't scalar multiples of the
-            identity::
-
-                sage: set_random_seed()
-                sage: n = ZZ.random_element(2,10)
-                sage: J = JordanSpinEJA(n)
-                sage: y = J.random_element()
-                sage: while y == y.coefficient(0)*J.one():
-                ....:     y = J.random_element()
-                sage: y0 = y.vector()[0]
-                sage: y_bar = y.vector()[1:]
-                sage: actual = y.minimal_polynomial()
-                sage: t = PolynomialRing(J.base_ring(),'t').gen(0)
-                sage: expected = t^2 - 2*y0*t + (y0^2 - norm(y_bar)^2)
-                sage: bool(actual == expected)
-                True
-
-            The minimal polynomial should always kill its element::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: p = x.minimal_polynomial()
-                sage: x.apply_univariate_polynomial(p)
-                0
-
-            """
-            V = self.span_of_powers()
-            assoc_subalg = self.subalgebra_generated_by()
-            # Mis-design warning: the basis used for span_of_powers()
-            # and subalgebra_generated_by() must be the same, and in
-            # the same order!
-            elt = assoc_subalg(V.coordinates(self.vector()))
-            return elt.operator().minimal_polynomial()
-
-
-
-        def natural_representation(self):
-            """
-            Return a more-natural representation of this element.
-
-            Every finite-dimensional Euclidean Jordan Algebra is a
-            direct sum of five simple algebras, four of which comprise
-            Hermitian matrices. This method returns the original
-            "natural" representation of this element as a Hermitian
-            matrix, if it has one. If not, you get the usual representation.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
-                ....:                                  QuaternionHermitianEJA)
-
-            EXAMPLES::
-
-                sage: J = ComplexHermitianEJA(3)
-                sage: J.one()
-                e0 + e5 + e8
-                sage: J.one().natural_representation()
-                [1 0 0 0 0 0]
-                [0 1 0 0 0 0]
-                [0 0 1 0 0 0]
-                [0 0 0 1 0 0]
-                [0 0 0 0 1 0]
-                [0 0 0 0 0 1]
-
-            ::
-
-                sage: J = QuaternionHermitianEJA(3)
-                sage: J.one()
-                e0 + e9 + e14
-                sage: J.one().natural_representation()
-                [1 0 0 0 0 0 0 0 0 0 0 0]
-                [0 1 0 0 0 0 0 0 0 0 0 0]
-                [0 0 1 0 0 0 0 0 0 0 0 0]
-                [0 0 0 1 0 0 0 0 0 0 0 0]
-                [0 0 0 0 1 0 0 0 0 0 0 0]
-                [0 0 0 0 0 1 0 0 0 0 0 0]
-                [0 0 0 0 0 0 1 0 0 0 0 0]
-                [0 0 0 0 0 0 0 1 0 0 0 0]
-                [0 0 0 0 0 0 0 0 1 0 0 0]
-                [0 0 0 0 0 0 0 0 0 1 0 0]
-                [0 0 0 0 0 0 0 0 0 0 1 0]
-                [0 0 0 0 0 0 0 0 0 0 0 1]
-
-            """
-            B = self.parent().natural_basis()
-            W = B[0].matrix_space()
-            return W.linear_combination(zip(self.vector(), B))
-
-
-        def operator(self):
-            """
-            Return the left-multiplication-by-this-element
-            operator on the ambient algebra.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            TESTS::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: x.operator()(y) == x*y
-                True
-                sage: y.operator()(x) == x*y
-                True
-
-            """
-            P = self.parent()
-            fda_elt = FiniteDimensionalAlgebraElement(P, self)
-            return FiniteDimensionalEuclideanJordanAlgebraOperator(
-                     P,
-                     P,
-                     fda_elt.matrix().transpose() )
-
-
-        def quadratic_representation(self, other=None):
-            """
-            Return the quadratic representation of this element.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  random_eja)
-
-            EXAMPLES:
-
-            The explicit form in the spin factor algebra is given by
-            Alizadeh's Example 11.12::
-
-                sage: set_random_seed()
-                sage: n = ZZ.random_element(1,10)
-                sage: J = JordanSpinEJA(n)
-                sage: x = J.random_element()
-                sage: x_vec = x.vector()
-                sage: x0 = x_vec[0]
-                sage: x_bar = x_vec[1:]
-                sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
-                sage: B = 2*x0*x_bar.row()
-                sage: C = 2*x0*x_bar.column()
-                sage: D = matrix.identity(QQ, n-1)
-                sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
-                sage: D = D + 2*x_bar.tensor_product(x_bar)
-                sage: Q = matrix.block(2,2,[A,B,C,D])
-                sage: Q == x.quadratic_representation().matrix()
-                True
-
-            Test all of the properties from Theorem 11.2 in Alizadeh::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: Lx = x.operator()
-                sage: Lxx = (x*x).operator()
-                sage: Qx = x.quadratic_representation()
-                sage: Qy = y.quadratic_representation()
-                sage: Qxy = x.quadratic_representation(y)
-                sage: Qex = J.one().quadratic_representation(x)
-                sage: n = ZZ.random_element(10)
-                sage: Qxn = (x^n).quadratic_representation()
-
-            Property 1:
-
-                sage: 2*Qxy == (x+y).quadratic_representation() - Qx - Qy
-                True
-
-            Property 2 (multiply on the right for :trac:`28272`):
-
-                sage: alpha = QQ.random_element()
-                sage: (alpha*x).quadratic_representation() == Qx*(alpha^2)
-                True
-
-            Property 3:
-
-                sage: not x.is_invertible() or ( Qx(x.inverse()) == x )
-                True
-
-                sage: not x.is_invertible() or (
-                ....:   ~Qx
-                ....:   ==
-                ....:   x.inverse().quadratic_representation() )
-                True
-
-                sage: Qxy(J.one()) == x*y
-                True
-
-            Property 4:
-
-                sage: not x.is_invertible() or (
-                ....:   x.quadratic_representation(x.inverse())*Qx
-                ....:   == Qx*x.quadratic_representation(x.inverse()) )
-                True
-
-                sage: not x.is_invertible() or (
-                ....:   x.quadratic_representation(x.inverse())*Qx
-                ....:   ==
-                ....:   2*x.operator()*Qex - Qx )
-                True
-
-                sage: 2*x.operator()*Qex - Qx == Lxx
-                True
-
-            Property 5:
-
-                sage: Qy(x).quadratic_representation() == Qy*Qx*Qy
-                True
-
-            Property 6:
-
-                sage: Qxn == (Qx)^n
-                True
-
-            Property 7:
-
-                sage: not x.is_invertible() or (
-                ....:   Qx*x.inverse().operator() == Lx )
-                True
-
-            Property 8:
-
-                sage: not x.operator_commutes_with(y) or (
-                ....:   Qx(y)^n == Qxn(y^n) )
-                True
-
-            """
-            if other is None:
-                other=self
-            elif not other in self.parent():
-                raise TypeError("'other' must live in the same algebra")
-
-            L = self.operator()
-            M = other.operator()
-            return ( L*M + M*L - (self*other).operator() )
-
-
-        def span_of_powers(self):
-            """
-            Return the vector space spanned by successive powers of
-            this element.
-            """
-            # The dimension of the subalgebra can't be greater than
-            # the big algebra, so just put everything into a list
-            # and let span() get rid of the excess.
-            #
-            # We do the extra ambient_vector_space() in case we're messing
-            # with polynomials and the direct parent is a module.
-            V = self.parent().vector_space()
-            return V.span( (self**d).vector() for d in xrange(V.dimension()) )
-
-
-        def subalgebra_generated_by(self):
-            """
-            Return the associative subalgebra of the parent EJA generated
-            by this element.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            TESTS::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: x.subalgebra_generated_by().is_associative()
-                True
-
-            Squaring in the subalgebra should work the same as in
-            the superalgebra::
-
-                sage: set_random_seed()
-                sage: x = random_eja().random_element()
-                sage: u = x.subalgebra_generated_by().random_element()
-                sage: u.operator()(u) == u^2
-                True
-
-            """
-            # First get the subspace spanned by the powers of myself...
-            V = self.span_of_powers()
-            F = self.base_ring()
-
-            # Now figure out the entries of the right-multiplication
-            # matrix for the successive basis elements b0, b1,... of
-            # that subspace.
-            mats = []
-            for b_right in V.basis():
-                eja_b_right = self.parent()(b_right)
-                b_right_rows = []
-                # The first row of the right-multiplication matrix by
-                # b1 is what we get if we apply that matrix to b1. The
-                # second row of the right multiplication matrix by b1
-                # is what we get when we apply that matrix to b2...
-                #
-                # IMPORTANT: this assumes that all vectors are COLUMN
-                # vectors, unlike our superclass (which uses row vectors).
-                for b_left in V.basis():
-                    eja_b_left = self.parent()(b_left)
-                    # Multiply in the original EJA, but then get the
-                    # coordinates from the subalgebra in terms of its
-                    # basis.
-                    this_row = V.coordinates((eja_b_left*eja_b_right).vector())
-                    b_right_rows.append(this_row)
-                b_right_matrix = matrix(F, b_right_rows)
-                mats.append(b_right_matrix)
-
-            # It's an algebra of polynomials in one element, and EJAs
-            # are power-associative.
-            #
-            # TODO: choose generator names intelligently.
-            #
-            # The rank is the highest possible degree of a minimal polynomial,
-            # and is bounded above by the dimension. We know in this case that
-            # there's an element whose minimal polynomial has the same degree
-            # as the space's dimension, so that must be its rank too.
-            return FiniteDimensionalEuclideanJordanAlgebra(
-                     F,
-                     mats,
-                     V.dimension(),
-                     assume_associative=True,
-                     names='f')
-
-
-        def subalgebra_idempotent(self):
-            """
-            Find an idempotent in the associative subalgebra I generate
-            using Proposition 2.3.5 in Baes.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            TESTS::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: while x.is_nilpotent():
-                ....:     x = J.random_element()
-                sage: c = x.subalgebra_idempotent()
-                sage: c^2 == c
-                True
-
-            """
-            if self.is_nilpotent():
-                raise ValueError("this only works with non-nilpotent elements!")
-
-            V = self.span_of_powers()
-            J = self.subalgebra_generated_by()
-            # Mis-design warning: the basis used for span_of_powers()
-            # and subalgebra_generated_by() must be the same, and in
-            # the same order!
-            u = J(V.coordinates(self.vector()))
-
-            # The image of the matrix of left-u^m-multiplication
-            # will be minimal for some natural number s...
-            s = 0
-            minimal_dim = V.dimension()
-            for i in xrange(1, V.dimension()):
-                this_dim = (u**i).operator().matrix().image().dimension()
-                if this_dim < minimal_dim:
-                    minimal_dim = this_dim
-                    s = i
-
-            # Now minimal_matrix should correspond to the smallest
-            # non-zero subspace in Baes's (or really, Koecher's)
-            # proposition.
-            #
-            # However, we need to restrict the matrix to work on the
-            # subspace... or do we? Can't we just solve, knowing that
-            # A(c) = u^(s+1) should have a solution in the big space,
-            # too?
-            #
-            # Beware, solve_right() means that we're using COLUMN vectors.
-            # Our FiniteDimensionalAlgebraElement superclass uses rows.
-            u_next = u**(s+1)
-            A = u_next.operator().matrix()
-            c_coordinates = A.solve_right(u_next.vector())
-
-            # Now c_coordinates is the idempotent we want, but it's in
-            # the coordinate system of the subalgebra.
-            #
-            # We need the basis for J, but as elements of the parent algebra.
-            #
-            basis = [self.parent(v) for v in V.basis()]
-            return self.parent().linear_combination(zip(c_coordinates, basis))
-
-
-        def trace(self):
-            """
-            Return my trace, the sum of my eigenvalues.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-                ....:                                  RealCartesianProductEJA,
-                ....:                                  random_eja)
-
-            EXAMPLES::
-
-                sage: J = JordanSpinEJA(3)
-                sage: x = sum(J.gens())
-                sage: x.trace()
-                2
-
-            ::
-
-                sage: J = RealCartesianProductEJA(5)
-                sage: J.one().trace()
-                5
-
-            TESTS:
-
-            The trace of an element is a real number::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: J.random_element().trace() in J.base_ring()
-                True
-
-            """
-            P = self.parent()
-            r = P.rank()
-            p = P._charpoly_coeff(r-1)
-            # The _charpoly_coeff function already adds the factor of
-            # -1 to ensure that _charpoly_coeff(r-1) is really what
-            # appears in front of t^{r-1} in the charpoly. However,
-            # we want the negative of THAT for the trace.
-            return -p(*self.vector())
-
-
-        def trace_inner_product(self, other):
-            """
-            Return the trace inner product of myself and ``other``.
-
-            SETUP::
-
-                sage: from mjo.eja.eja_algebra import random_eja
-
-            TESTS:
-
-            The trace inner product is commutative::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element(); y = J.random_element()
-                sage: x.trace_inner_product(y) == y.trace_inner_product(x)
-                True
-
-            The trace inner product is bilinear::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: z = J.random_element()
-                sage: a = QQ.random_element();
-                sage: actual = (a*(x+z)).trace_inner_product(y)
-                sage: expected = ( a*x.trace_inner_product(y) +
-                ....:              a*z.trace_inner_product(y) )
-                sage: actual == expected
-                True
-                sage: actual = x.trace_inner_product(a*(y+z))
-                sage: expected = ( a*x.trace_inner_product(y) +
-                ....:              a*x.trace_inner_product(z) )
-                sage: actual == expected
-                True
-
-            The trace inner product satisfies the compatibility
-            condition in the definition of a Euclidean Jordan algebra::
-
-                sage: set_random_seed()
-                sage: J = random_eja()
-                sage: x = J.random_element()
-                sage: y = J.random_element()
-                sage: z = J.random_element()
-                sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
-                True
-
-            """
-            if not other in self.parent():
-                raise TypeError("'other' must live in the same algebra")
-
-            return (self*other).trace()
+    Element = FiniteDimensionalEuclideanJordanAlgebraElement
 
 
 class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra):
@@ -1900,11 +666,6 @@ def _quaternion_hermitian_basis(n, field=QQ):
     return tuple(S)
 
 
-def _mat2vec(m):
-        return vector(m.base_ring(), m.list())
-
-def _vec2mat(v):
-        return matrix(v.base_ring(), sqrt(v.degree()), v.list())
 
 def _multiplication_table_from_matrix_basis(basis):
     """
diff --git a/mjo/eja/eja_element.py b/mjo/eja/eja_element.py
new file mode 100644 (file)
index 0000000..1b5e314
--- /dev/null
@@ -0,0 +1,1240 @@
+from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement
+from sage.matrix.constructor import matrix
+from sage.modules.free_module import VectorSpace
+
+# TODO: make this unnecessary somehow.
+from sage.misc.lazy_import import lazy_import
+lazy_import('mjo.eja.eja_algebra', 'FiniteDimensionalEuclideanJordanAlgebra')
+from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
+from mjo.eja.eja_utils import _mat2vec
+
+class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraElement):
+    """
+    An element of a Euclidean Jordan algebra.
+    """
+
+    def __dir__(self):
+        """
+        Oh man, I should not be doing this. This hides the "disabled"
+        methods ``left_matrix`` and ``matrix`` from introspection;
+        in particular it removes them from tab-completion.
+        """
+        return filter(lambda s: s not in ['left_matrix', 'matrix'],
+                      dir(self.__class__) )
+
+
+    def __init__(self, A, elt=None):
+        """
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
+            ....:                                  random_eja)
+
+        EXAMPLES:
+
+        The identity in `S^n` is converted to the identity in the EJA::
+
+            sage: J = RealSymmetricEJA(3)
+            sage: I = matrix.identity(QQ,3)
+            sage: J(I) == J.one()
+            True
+
+        This skew-symmetric matrix can't be represented in the EJA::
+
+            sage: J = RealSymmetricEJA(3)
+            sage: A = matrix(QQ,3, lambda i,j: i-j)
+            sage: J(A)
+            Traceback (most recent call last):
+            ...
+            ArithmeticError: vector is not in free module
+
+        TESTS:
+
+        Ensure that we can convert any element of the parent's
+        underlying vector space back into an algebra element whose
+        vector representation is what we started with::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: v = J.vector_space().random_element()
+            sage: J(v).vector() == v
+            True
+
+        """
+        # Goal: if we're given a matrix, and if it lives in our
+        # parent algebra's "natural ambient space," convert it
+        # into an algebra element.
+        #
+        # The catch is, we make a recursive call after converting
+        # the given matrix into a vector that lives in the algebra.
+        # This we need to try the parent class initializer first,
+        # to avoid recursing forever if we're given something that
+        # already fits into the algebra, but also happens to live
+        # in the parent's "natural ambient space" (this happens with
+        # vectors in R^n).
+        try:
+            FiniteDimensionalAlgebraElement.__init__(self, A, elt)
+        except ValueError:
+            natural_basis = A.natural_basis()
+            if elt in natural_basis[0].matrix_space():
+                # Thanks for nothing! Matrix spaces aren't vector
+                # spaces in Sage, so we have to figure out its
+                # natural-basis coordinates ourselves.
+                V = VectorSpace(elt.base_ring(), elt.nrows()**2)
+                W = V.span( _mat2vec(s) for s in natural_basis )
+                coords =  W.coordinates(_mat2vec(elt))
+                FiniteDimensionalAlgebraElement.__init__(self, A, coords)
+
+    def __pow__(self, n):
+        """
+        Return ``self`` raised to the power ``n``.
+
+        Jordan algebras are always power-associative; see for
+        example Faraut and Koranyi, Proposition II.1.2 (ii).
+
+        We have to override this because our superclass uses row
+        vectors instead of column vectors! We, on the other hand,
+        assume column vectors everywhere.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import random_eja
+
+        TESTS:
+
+        The definition of `x^2` is the unambiguous `x*x`::
+
+            sage: set_random_seed()
+            sage: x = random_eja().random_element()
+            sage: x*x == (x^2)
+            True
+
+        A few examples of power-associativity::
+
+            sage: set_random_seed()
+            sage: x = random_eja().random_element()
+            sage: x*(x*x)*(x*x) == x^5
+            True
+            sage: (x*x)*(x*x*x) == x^5
+            True
+
+        We also know that powers operator-commute (Koecher, Chapter
+        III, Corollary 1)::
+
+            sage: set_random_seed()
+            sage: x = random_eja().random_element()
+            sage: m = ZZ.random_element(0,10)
+            sage: n = ZZ.random_element(0,10)
+            sage: Lxm = (x^m).operator()
+            sage: Lxn = (x^n).operator()
+            sage: Lxm*Lxn == Lxn*Lxm
+            True
+
+        """
+        if n == 0:
+            return self.parent().one()
+        elif n == 1:
+            return self
+        else:
+            return (self.operator()**(n-1))(self)
+
+
+    def apply_univariate_polynomial(self, p):
+        """
+        Apply the univariate polynomial ``p`` to this element.
+
+        A priori, SageMath won't allow us to apply a univariate
+        polynomial to an element of an EJA, because we don't know
+        that EJAs are rings (they are usually not associative). Of
+        course, we know that EJAs are power-associative, so the
+        operation is ultimately kosher. This function sidesteps
+        the CAS to get the answer we want and expect.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
+            ....:                                  random_eja)
+
+        EXAMPLES::
+
+            sage: R = PolynomialRing(QQ, 't')
+            sage: t = R.gen(0)
+            sage: p = t^4 - t^3 + 5*t - 2
+            sage: J = RealCartesianProductEJA(5)
+            sage: J.one().apply_univariate_polynomial(p) == 3*J.one()
+            True
+
+        TESTS:
+
+        We should always get back an element of the algebra::
+
+            sage: set_random_seed()
+            sage: p = PolynomialRing(QQ, 't').random_element()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: x.apply_univariate_polynomial(p) in J
+            True
+
+        """
+        if len(p.variables()) > 1:
+            raise ValueError("not a univariate polynomial")
+        P = self.parent()
+        R = P.base_ring()
+        # Convert the coeficcients to the parent's base ring,
+        # because a priori they might live in an (unnecessarily)
+        # larger ring for which P.sum() would fail below.
+        cs = [ R(c) for c in p.coefficients(sparse=False) ]
+        return P.sum( cs[k]*(self**k) for k in range(len(cs)) )
+
+
+    def characteristic_polynomial(self):
+        """
+        Return the characteristic polynomial of this element.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import RealCartesianProductEJA
+
+        EXAMPLES:
+
+        The rank of `R^3` is three, and the minimal polynomial of
+        the identity element is `(t-1)` from which it follows that
+        the characteristic polynomial should be `(t-1)^3`::
+
+            sage: J = RealCartesianProductEJA(3)
+            sage: J.one().characteristic_polynomial()
+            t^3 - 3*t^2 + 3*t - 1
+
+        Likewise, the characteristic of the zero element in the
+        rank-three algebra `R^{n}` should be `t^{3}`::
+
+            sage: J = RealCartesianProductEJA(3)
+            sage: J.zero().characteristic_polynomial()
+            t^3
+
+        TESTS:
+
+        The characteristic polynomial of an element should evaluate
+        to zero on that element::
+
+            sage: set_random_seed()
+            sage: x = RealCartesianProductEJA(3).random_element()
+            sage: p = x.characteristic_polynomial()
+            sage: x.apply_univariate_polynomial(p)
+            0
+
+        """
+        p = self.parent().characteristic_polynomial()
+        return p(*self.vector())
+
+
+    def inner_product(self, other):
+        """
+        Return the parent algebra's inner product of myself and ``other``.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (
+            ....:   ComplexHermitianEJA,
+            ....:   JordanSpinEJA,
+            ....:   QuaternionHermitianEJA,
+            ....:   RealSymmetricEJA,
+            ....:   random_eja)
+
+        EXAMPLES:
+
+        The inner product in the Jordan spin algebra is the usual
+        inner product on `R^n` (this example only works because the
+        basis for the Jordan algebra is the standard basis in `R^n`)::
+
+            sage: J = JordanSpinEJA(3)
+            sage: x = vector(QQ,[1,2,3])
+            sage: y = vector(QQ,[4,5,6])
+            sage: x.inner_product(y)
+            32
+            sage: J(x).inner_product(J(y))
+            32
+
+        The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
+        multiplication is the usual matrix multiplication in `S^n`,
+        so the inner product of the identity matrix with itself
+        should be the `n`::
+
+            sage: J = RealSymmetricEJA(3)
+            sage: J.one().inner_product(J.one())
+            3
+
+        Likewise, the inner product on `C^n` is `<X,Y> =
+        Re(trace(X*Y))`, where we must necessarily take the real
+        part because the product of Hermitian matrices may not be
+        Hermitian::
+
+            sage: J = ComplexHermitianEJA(3)
+            sage: J.one().inner_product(J.one())
+            3
+
+        Ditto for the quaternions::
+
+            sage: J = QuaternionHermitianEJA(3)
+            sage: J.one().inner_product(J.one())
+            3
+
+        TESTS:
+
+        Ensure that we can always compute an inner product, and that
+        it gives us back a real number::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: y = J.random_element()
+            sage: x.inner_product(y) in RR
+            True
+
+        """
+        P = self.parent()
+        if not other in P:
+            raise TypeError("'other' must live in the same algebra")
+
+        return P.inner_product(self, other)
+
+
+    def operator_commutes_with(self, other):
+        """
+        Return whether or not this element operator-commutes
+        with ``other``.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import random_eja
+
+        EXAMPLES:
+
+        The definition of a Jordan algebra says that any element
+        operator-commutes with its square::
+
+            sage: set_random_seed()
+            sage: x = random_eja().random_element()
+            sage: x.operator_commutes_with(x^2)
+            True
+
+        TESTS:
+
+        Test Lemma 1 from Chapter III of Koecher::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: u = J.random_element()
+            sage: v = J.random_element()
+            sage: lhs = u.operator_commutes_with(u*v)
+            sage: rhs = v.operator_commutes_with(u^2)
+            sage: lhs == rhs
+            True
+
+        Test the first polarization identity from my notes, Koecher
+        Chapter III, or from Baes (2.3)::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: y = J.random_element()
+            sage: Lx = x.operator()
+            sage: Ly = y.operator()
+            sage: Lxx = (x*x).operator()
+            sage: Lxy = (x*y).operator()
+            sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
+            True
+
+        Test the second polarization identity from my notes or from
+        Baes (2.4)::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: y = J.random_element()
+            sage: z = J.random_element()
+            sage: Lx = x.operator()
+            sage: Ly = y.operator()
+            sage: Lz = z.operator()
+            sage: Lzy = (z*y).operator()
+            sage: Lxy = (x*y).operator()
+            sage: Lxz = (x*z).operator()
+            sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
+            True
+
+        Test the third polarization identity from my notes or from
+        Baes (2.5)::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: u = J.random_element()
+            sage: y = J.random_element()
+            sage: z = J.random_element()
+            sage: Lu = u.operator()
+            sage: Ly = y.operator()
+            sage: Lz = z.operator()
+            sage: Lzy = (z*y).operator()
+            sage: Luy = (u*y).operator()
+            sage: Luz = (u*z).operator()
+            sage: Luyz = (u*(y*z)).operator()
+            sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
+            sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
+            sage: bool(lhs == rhs)
+            True
+
+        """
+        if not other in self.parent():
+            raise TypeError("'other' must live in the same algebra")
+
+        A = self.operator()
+        B = other.operator()
+        return (A*B == B*A)
+
+
+    def det(self):
+        """
+        Return my determinant, the product of my eigenvalues.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            ....:                                  random_eja)
+
+        EXAMPLES::
+
+            sage: J = JordanSpinEJA(2)
+            sage: e0,e1 = J.gens()
+            sage: x = sum( J.gens() )
+            sage: x.det()
+            0
+
+        ::
+
+            sage: J = JordanSpinEJA(3)
+            sage: e0,e1,e2 = J.gens()
+            sage: x = sum( J.gens() )
+            sage: x.det()
+            -1
+
+        TESTS:
+
+        An element is invertible if and only if its determinant is
+        non-zero::
+
+            sage: set_random_seed()
+            sage: x = random_eja().random_element()
+            sage: x.is_invertible() == (x.det() != 0)
+            True
+
+        """
+        P = self.parent()
+        r = P.rank()
+        p = P._charpoly_coeff(0)
+        # The _charpoly_coeff function already adds the factor of
+        # -1 to ensure that _charpoly_coeff(0) is really what
+        # appears in front of t^{0} in the charpoly. However,
+        # we want (-1)^r times THAT for the determinant.
+        return ((-1)**r)*p(*self.vector())
+
+
+    def inverse(self):
+        """
+        Return the Jordan-multiplicative inverse of this element.
+
+        ALGORITHM:
+
+        We appeal to the quadratic representation as in Koecher's
+        Theorem 12 in Chapter III, Section 5.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            ....:                                  random_eja)
+
+        EXAMPLES:
+
+        The inverse in the spin factor algebra is given in Alizadeh's
+        Example 11.11::
+
+            sage: set_random_seed()
+            sage: n = ZZ.random_element(1,10)
+            sage: J = JordanSpinEJA(n)
+            sage: x = J.random_element()
+            sage: while not x.is_invertible():
+            ....:     x = J.random_element()
+            sage: x_vec = x.vector()
+            sage: x0 = x_vec[0]
+            sage: x_bar = x_vec[1:]
+            sage: coeff = ~(x0^2 - x_bar.inner_product(x_bar))
+            sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
+            sage: x_inverse = coeff*inv_vec
+            sage: x.inverse() == J(x_inverse)
+            True
+
+        TESTS:
+
+        The identity element is its own inverse::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: J.one().inverse() == J.one()
+            True
+
+        If an element has an inverse, it acts like one::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: (not x.is_invertible()) or (x.inverse()*x == J.one())
+            True
+
+        The inverse of the inverse is what we started with::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: (not x.is_invertible()) or (x.inverse().inverse() == x)
+            True
+
+        The zero element is never invertible::
+
+            sage: set_random_seed()
+            sage: J = random_eja().zero().inverse()
+            Traceback (most recent call last):
+            ...
+            ValueError: element is not invertible
+
+        """
+        if not self.is_invertible():
+            raise ValueError("element is not invertible")
+
+        return (~self.quadratic_representation())(self)
+
+
+    def is_invertible(self):
+        """
+        Return whether or not this element is invertible.
+
+        ALGORITHM:
+
+        The usual way to do this is to check if the determinant is
+        zero, but we need the characteristic polynomial for the
+        determinant. The minimal polynomial is a lot easier to get,
+        so we use Corollary 2 in Chapter V of Koecher to check
+        whether or not the paren't algebra's zero element is a root
+        of this element's minimal polynomial.
+
+        Beware that we can't use the superclass method, because it
+        relies on the algebra being associative.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import random_eja
+
+        TESTS:
+
+        The identity element is always invertible::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: J.one().is_invertible()
+            True
+
+        The zero element is never invertible::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: J.zero().is_invertible()
+            False
+
+        """
+        zero = self.parent().zero()
+        p = self.minimal_polynomial()
+        return not (p(zero) == zero)
+
+
+    def is_nilpotent(self):
+        """
+        Return whether or not some power of this element is zero.
+
+        ALGORITHM:
+
+        We use Theorem 5 in Chapter III of Koecher, which says that
+        an element ``x`` is nilpotent if and only if ``x.operator()``
+        is nilpotent. And it is a basic fact of linear algebra that
+        an operator on an `n`-dimensional space is nilpotent if and
+        only if, when raised to the `n`th power, it equals the zero
+        operator (for example, see Axler Corollary 8.8).
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            ....:                                  random_eja)
+
+        EXAMPLES::
+
+            sage: J = JordanSpinEJA(3)
+            sage: x = sum(J.gens())
+            sage: x.is_nilpotent()
+            False
+
+        TESTS:
+
+        The identity element is never nilpotent::
+
+            sage: set_random_seed()
+            sage: random_eja().one().is_nilpotent()
+            False
+
+        The additive identity is always nilpotent::
+
+            sage: set_random_seed()
+            sage: random_eja().zero().is_nilpotent()
+            True
+
+        """
+        P = self.parent()
+        zero_operator = P.zero().operator()
+        return self.operator()**P.dimension() == zero_operator
+
+
+    def is_regular(self):
+        """
+        Return whether or not this is a regular element.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            ....:                                  random_eja)
+
+        EXAMPLES:
+
+        The identity element always has degree one, but any element
+        linearly-independent from it is regular::
+
+            sage: J = JordanSpinEJA(5)
+            sage: J.one().is_regular()
+            False
+            sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
+            sage: for x in J.gens():
+            ....:     (J.one() + x).is_regular()
+            False
+            True
+            True
+            True
+            True
+
+        TESTS:
+
+        The zero element should never be regular::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: J.zero().is_regular()
+            False
+
+        The unit element isn't regular unless the algebra happens to
+        consist of only its scalar multiples::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: J.dimension() == 1 or not J.one().is_regular()
+            True
+
+        """
+        return self.degree() == self.parent().rank()
+
+
+    def degree(self):
+        """
+        Return the degree of this element, which is defined to be
+        the degree of its minimal polynomial.
+
+        ALGORITHM:
+
+        For now, we skip the messy minimal polynomial computation
+        and instead return the dimension of the vector space spanned
+        by the powers of this element. The latter is a bit more
+        straightforward to compute.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            ....:                                  random_eja)
+
+        EXAMPLES::
+
+            sage: J = JordanSpinEJA(4)
+            sage: J.one().degree()
+            1
+            sage: e0,e1,e2,e3 = J.gens()
+            sage: (e0 - e1).degree()
+            2
+
+        In the spin factor algebra (of rank two), all elements that
+        aren't multiples of the identity are regular::
+
+            sage: set_random_seed()
+            sage: n = ZZ.random_element(1,10)
+            sage: J = JordanSpinEJA(n)
+            sage: x = J.random_element()
+            sage: x == x.coefficient(0)*J.one() or x.degree() == 2
+            True
+
+        TESTS:
+
+        The zero and unit elements are both of degree one::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: J.zero().degree()
+            1
+            sage: J.one().degree()
+            1
+
+        Our implementation agrees with the definition::
+
+            sage: set_random_seed()
+            sage: x = random_eja().random_element()
+            sage: x.degree() == x.minimal_polynomial().degree()
+            True
+
+        """
+        return self.span_of_powers().dimension()
+
+
+    def left_matrix(self):
+        """
+        Our parent class defines ``left_matrix`` and ``matrix``
+        methods whose names are misleading. We don't want them.
+        """
+        raise NotImplementedError("use operator().matrix() instead")
+
+    matrix = left_matrix
+
+
+    def minimal_polynomial(self):
+        """
+        Return the minimal polynomial of this element,
+        as a function of the variable `t`.
+
+        ALGORITHM:
+
+        We restrict ourselves to the associative subalgebra
+        generated by this element, and then return the minimal
+        polynomial of this element's operator matrix (in that
+        subalgebra). This works by Baes Proposition 2.3.16.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            ....:                                  random_eja)
+
+        TESTS:
+
+        The minimal polynomial of the identity and zero elements are
+        always the same::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: J.one().minimal_polynomial()
+            t - 1
+            sage: J.zero().minimal_polynomial()
+            t
+
+        The degree of an element is (by one definition) the degree
+        of its minimal polynomial::
+
+            sage: set_random_seed()
+            sage: x = random_eja().random_element()
+            sage: x.degree() == x.minimal_polynomial().degree()
+            True
+
+        The minimal polynomial and the characteristic polynomial coincide
+        and are known (see Alizadeh, Example 11.11) for all elements of
+        the spin factor algebra that aren't scalar multiples of the
+        identity::
+
+            sage: set_random_seed()
+            sage: n = ZZ.random_element(2,10)
+            sage: J = JordanSpinEJA(n)
+            sage: y = J.random_element()
+            sage: while y == y.coefficient(0)*J.one():
+            ....:     y = J.random_element()
+            sage: y0 = y.vector()[0]
+            sage: y_bar = y.vector()[1:]
+            sage: actual = y.minimal_polynomial()
+            sage: t = PolynomialRing(J.base_ring(),'t').gen(0)
+            sage: expected = t^2 - 2*y0*t + (y0^2 - norm(y_bar)^2)
+            sage: bool(actual == expected)
+            True
+
+        The minimal polynomial should always kill its element::
+
+            sage: set_random_seed()
+            sage: x = random_eja().random_element()
+            sage: p = x.minimal_polynomial()
+            sage: x.apply_univariate_polynomial(p)
+            0
+
+        """
+        V = self.span_of_powers()
+        assoc_subalg = self.subalgebra_generated_by()
+        # Mis-design warning: the basis used for span_of_powers()
+        # and subalgebra_generated_by() must be the same, and in
+        # the same order!
+        elt = assoc_subalg(V.coordinates(self.vector()))
+        return elt.operator().minimal_polynomial()
+
+
+
+    def natural_representation(self):
+        """
+        Return a more-natural representation of this element.
+
+        Every finite-dimensional Euclidean Jordan Algebra is a
+        direct sum of five simple algebras, four of which comprise
+        Hermitian matrices. This method returns the original
+        "natural" representation of this element as a Hermitian
+        matrix, if it has one. If not, you get the usual representation.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
+            ....:                                  QuaternionHermitianEJA)
+
+        EXAMPLES::
+
+            sage: J = ComplexHermitianEJA(3)
+            sage: J.one()
+            e0 + e5 + e8
+            sage: J.one().natural_representation()
+            [1 0 0 0 0 0]
+            [0 1 0 0 0 0]
+            [0 0 1 0 0 0]
+            [0 0 0 1 0 0]
+            [0 0 0 0 1 0]
+            [0 0 0 0 0 1]
+
+        ::
+
+            sage: J = QuaternionHermitianEJA(3)
+            sage: J.one()
+            e0 + e9 + e14
+            sage: J.one().natural_representation()
+            [1 0 0 0 0 0 0 0 0 0 0 0]
+            [0 1 0 0 0 0 0 0 0 0 0 0]
+            [0 0 1 0 0 0 0 0 0 0 0 0]
+            [0 0 0 1 0 0 0 0 0 0 0 0]
+            [0 0 0 0 1 0 0 0 0 0 0 0]
+            [0 0 0 0 0 1 0 0 0 0 0 0]
+            [0 0 0 0 0 0 1 0 0 0 0 0]
+            [0 0 0 0 0 0 0 1 0 0 0 0]
+            [0 0 0 0 0 0 0 0 1 0 0 0]
+            [0 0 0 0 0 0 0 0 0 1 0 0]
+            [0 0 0 0 0 0 0 0 0 0 1 0]
+            [0 0 0 0 0 0 0 0 0 0 0 1]
+
+        """
+        B = self.parent().natural_basis()
+        W = B[0].matrix_space()
+        return W.linear_combination(zip(self.vector(), B))
+
+
+    def operator(self):
+        """
+        Return the left-multiplication-by-this-element
+        operator on the ambient algebra.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import random_eja
+
+        TESTS::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: y = J.random_element()
+            sage: x.operator()(y) == x*y
+            True
+            sage: y.operator()(x) == x*y
+            True
+
+        """
+        P = self.parent()
+        fda_elt = FiniteDimensionalAlgebraElement(P, self)
+        return FiniteDimensionalEuclideanJordanAlgebraOperator(
+                 P,
+                 P,
+                 fda_elt.matrix().transpose() )
+
+
+    def quadratic_representation(self, other=None):
+        """
+        Return the quadratic representation of this element.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            ....:                                  random_eja)
+
+        EXAMPLES:
+
+        The explicit form in the spin factor algebra is given by
+        Alizadeh's Example 11.12::
+
+            sage: set_random_seed()
+            sage: n = ZZ.random_element(1,10)
+            sage: J = JordanSpinEJA(n)
+            sage: x = J.random_element()
+            sage: x_vec = x.vector()
+            sage: x0 = x_vec[0]
+            sage: x_bar = x_vec[1:]
+            sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
+            sage: B = 2*x0*x_bar.row()
+            sage: C = 2*x0*x_bar.column()
+            sage: D = matrix.identity(QQ, n-1)
+            sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
+            sage: D = D + 2*x_bar.tensor_product(x_bar)
+            sage: Q = matrix.block(2,2,[A,B,C,D])
+            sage: Q == x.quadratic_representation().matrix()
+            True
+
+        Test all of the properties from Theorem 11.2 in Alizadeh::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: y = J.random_element()
+            sage: Lx = x.operator()
+            sage: Lxx = (x*x).operator()
+            sage: Qx = x.quadratic_representation()
+            sage: Qy = y.quadratic_representation()
+            sage: Qxy = x.quadratic_representation(y)
+            sage: Qex = J.one().quadratic_representation(x)
+            sage: n = ZZ.random_element(10)
+            sage: Qxn = (x^n).quadratic_representation()
+
+        Property 1:
+
+            sage: 2*Qxy == (x+y).quadratic_representation() - Qx - Qy
+            True
+
+        Property 2 (multiply on the right for :trac:`28272`):
+
+            sage: alpha = QQ.random_element()
+            sage: (alpha*x).quadratic_representation() == Qx*(alpha^2)
+            True
+
+        Property 3:
+
+            sage: not x.is_invertible() or ( Qx(x.inverse()) == x )
+            True
+
+            sage: not x.is_invertible() or (
+            ....:   ~Qx
+            ....:   ==
+            ....:   x.inverse().quadratic_representation() )
+            True
+
+            sage: Qxy(J.one()) == x*y
+            True
+
+        Property 4:
+
+            sage: not x.is_invertible() or (
+            ....:   x.quadratic_representation(x.inverse())*Qx
+            ....:   == Qx*x.quadratic_representation(x.inverse()) )
+            True
+
+            sage: not x.is_invertible() or (
+            ....:   x.quadratic_representation(x.inverse())*Qx
+            ....:   ==
+            ....:   2*x.operator()*Qex - Qx )
+            True
+
+            sage: 2*x.operator()*Qex - Qx == Lxx
+            True
+
+        Property 5:
+
+            sage: Qy(x).quadratic_representation() == Qy*Qx*Qy
+            True
+
+        Property 6:
+
+            sage: Qxn == (Qx)^n
+            True
+
+        Property 7:
+
+            sage: not x.is_invertible() or (
+            ....:   Qx*x.inverse().operator() == Lx )
+            True
+
+        Property 8:
+
+            sage: not x.operator_commutes_with(y) or (
+            ....:   Qx(y)^n == Qxn(y^n) )
+            True
+
+        """
+        if other is None:
+            other=self
+        elif not other in self.parent():
+            raise TypeError("'other' must live in the same algebra")
+
+        L = self.operator()
+        M = other.operator()
+        return ( L*M + M*L - (self*other).operator() )
+
+
+    def span_of_powers(self):
+        """
+        Return the vector space spanned by successive powers of
+        this element.
+        """
+        # The dimension of the subalgebra can't be greater than
+        # the big algebra, so just put everything into a list
+        # and let span() get rid of the excess.
+        #
+        # We do the extra ambient_vector_space() in case we're messing
+        # with polynomials and the direct parent is a module.
+        V = self.parent().vector_space()
+        return V.span( (self**d).vector() for d in xrange(V.dimension()) )
+
+
+    def subalgebra_generated_by(self):
+        """
+        Return the associative subalgebra of the parent EJA generated
+        by this element.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import random_eja
+
+        TESTS::
+
+            sage: set_random_seed()
+            sage: x = random_eja().random_element()
+            sage: x.subalgebra_generated_by().is_associative()
+            True
+
+        Squaring in the subalgebra should work the same as in
+        the superalgebra::
+
+            sage: set_random_seed()
+            sage: x = random_eja().random_element()
+            sage: u = x.subalgebra_generated_by().random_element()
+            sage: u.operator()(u) == u^2
+            True
+
+        """
+        # First get the subspace spanned by the powers of myself...
+        V = self.span_of_powers()
+        F = self.base_ring()
+
+        # Now figure out the entries of the right-multiplication
+        # matrix for the successive basis elements b0, b1,... of
+        # that subspace.
+        mats = []
+        for b_right in V.basis():
+            eja_b_right = self.parent()(b_right)
+            b_right_rows = []
+            # The first row of the right-multiplication matrix by
+            # b1 is what we get if we apply that matrix to b1. The
+            # second row of the right multiplication matrix by b1
+            # is what we get when we apply that matrix to b2...
+            #
+            # IMPORTANT: this assumes that all vectors are COLUMN
+            # vectors, unlike our superclass (which uses row vectors).
+            for b_left in V.basis():
+                eja_b_left = self.parent()(b_left)
+                # Multiply in the original EJA, but then get the
+                # coordinates from the subalgebra in terms of its
+                # basis.
+                this_row = V.coordinates((eja_b_left*eja_b_right).vector())
+                b_right_rows.append(this_row)
+            b_right_matrix = matrix(F, b_right_rows)
+            mats.append(b_right_matrix)
+
+        # It's an algebra of polynomials in one element, and EJAs
+        # are power-associative.
+        #
+        # TODO: choose generator names intelligently.
+        #
+        # The rank is the highest possible degree of a minimal polynomial,
+        # and is bounded above by the dimension. We know in this case that
+        # there's an element whose minimal polynomial has the same degree
+        # as the space's dimension, so that must be its rank too.
+        return FiniteDimensionalEuclideanJordanAlgebra(
+                 F,
+                 mats,
+                 V.dimension(),
+                 assume_associative=True,
+                 names='f')
+
+
+    def subalgebra_idempotent(self):
+        """
+        Find an idempotent in the associative subalgebra I generate
+        using Proposition 2.3.5 in Baes.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import random_eja
+
+        TESTS::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: while x.is_nilpotent():
+            ....:     x = J.random_element()
+            sage: c = x.subalgebra_idempotent()
+            sage: c^2 == c
+            True
+
+        """
+        if self.is_nilpotent():
+            raise ValueError("this only works with non-nilpotent elements!")
+
+        V = self.span_of_powers()
+        J = self.subalgebra_generated_by()
+        # Mis-design warning: the basis used for span_of_powers()
+        # and subalgebra_generated_by() must be the same, and in
+        # the same order!
+        u = J(V.coordinates(self.vector()))
+
+        # The image of the matrix of left-u^m-multiplication
+        # will be minimal for some natural number s...
+        s = 0
+        minimal_dim = V.dimension()
+        for i in xrange(1, V.dimension()):
+            this_dim = (u**i).operator().matrix().image().dimension()
+            if this_dim < minimal_dim:
+                minimal_dim = this_dim
+                s = i
+
+        # Now minimal_matrix should correspond to the smallest
+        # non-zero subspace in Baes's (or really, Koecher's)
+        # proposition.
+        #
+        # However, we need to restrict the matrix to work on the
+        # subspace... or do we? Can't we just solve, knowing that
+        # A(c) = u^(s+1) should have a solution in the big space,
+        # too?
+        #
+        # Beware, solve_right() means that we're using COLUMN vectors.
+        # Our FiniteDimensionalAlgebraElement superclass uses rows.
+        u_next = u**(s+1)
+        A = u_next.operator().matrix()
+        c_coordinates = A.solve_right(u_next.vector())
+
+        # Now c_coordinates is the idempotent we want, but it's in
+        # the coordinate system of the subalgebra.
+        #
+        # We need the basis for J, but as elements of the parent algebra.
+        #
+        basis = [self.parent(v) for v in V.basis()]
+        return self.parent().linear_combination(zip(c_coordinates, basis))
+
+
+    def trace(self):
+        """
+        Return my trace, the sum of my eigenvalues.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            ....:                                  RealCartesianProductEJA,
+            ....:                                  random_eja)
+
+        EXAMPLES::
+
+            sage: J = JordanSpinEJA(3)
+            sage: x = sum(J.gens())
+            sage: x.trace()
+            2
+
+        ::
+
+            sage: J = RealCartesianProductEJA(5)
+            sage: J.one().trace()
+            5
+
+        TESTS:
+
+        The trace of an element is a real number::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: J.random_element().trace() in J.base_ring()
+            True
+
+        """
+        P = self.parent()
+        r = P.rank()
+        p = P._charpoly_coeff(r-1)
+        # The _charpoly_coeff function already adds the factor of
+        # -1 to ensure that _charpoly_coeff(r-1) is really what
+        # appears in front of t^{r-1} in the charpoly. However,
+        # we want the negative of THAT for the trace.
+        return -p(*self.vector())
+
+
+    def trace_inner_product(self, other):
+        """
+        Return the trace inner product of myself and ``other``.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import random_eja
+
+        TESTS:
+
+        The trace inner product is commutative::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element(); y = J.random_element()
+            sage: x.trace_inner_product(y) == y.trace_inner_product(x)
+            True
+
+        The trace inner product is bilinear::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: y = J.random_element()
+            sage: z = J.random_element()
+            sage: a = QQ.random_element();
+            sage: actual = (a*(x+z)).trace_inner_product(y)
+            sage: expected = ( a*x.trace_inner_product(y) +
+            ....:              a*z.trace_inner_product(y) )
+            sage: actual == expected
+            True
+            sage: actual = x.trace_inner_product(a*(y+z))
+            sage: expected = ( a*x.trace_inner_product(y) +
+            ....:              a*x.trace_inner_product(z) )
+            sage: actual == expected
+            True
+
+        The trace inner product satisfies the compatibility
+        condition in the definition of a Euclidean Jordan algebra::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x = J.random_element()
+            sage: y = J.random_element()
+            sage: z = J.random_element()
+            sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
+            True
+
+        """
+        if not other in self.parent():
+            raise TypeError("'other' must live in the same algebra")
+
+        return (self*other).trace()
diff --git a/mjo/eja/eja_utils.py b/mjo/eja/eja_utils.py
new file mode 100644 (file)
index 0000000..e8b7dc7
--- /dev/null
@@ -0,0 +1,9 @@
+from sage.matrix.constructor import matrix
+from sage.modules.free_module_element import vector
+from sage.functions.other import sqrt
+
+def _mat2vec(m):
+        return vector(m.base_ring(), m.list())
+
+def _vec2mat(v):
+        return matrix(v.base_ring(), sqrt(v.degree()), v.list())