what can be supported in a general Jordan Algebra.
"""
-
-
from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra import FiniteDimensionalAlgebra
-from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement
from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
from sage.categories.finite_dimensional_algebras_with_basis import FiniteDimensionalAlgebrasWithBasis
-from sage.functions.other import sqrt
from sage.matrix.constructor import matrix
from sage.misc.cachefunc import cached_method
from sage.misc.prandom import choice
from sage.modules.free_module import VectorSpace
-from sage.modules.free_module_element import vector
from sage.rings.integer_ring import ZZ
from sage.rings.number_field.number_field import QuadraticField
from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
from sage.structure.element import is_Matrix
from sage.structure.category_object import normalize_names
-from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
-
+from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
+from mjo.eja.eja_utils import _vec2mat, _mat2vec
class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
@staticmethod
return fda.__classcall__(cls,
field,
mult_table,
- rank=rank,
+ rank,
assume_associative=assume_associative,
names=names,
category=cat,
R = PolynomialRing(self.base_ring(), names)
J = FiniteDimensionalEuclideanJordanAlgebra(R,
self._multiplication_table,
- rank=r)
+ r)
idmat = matrix.identity(J.base_ring(), n)
return self.zero().vector().parent().ambient_vector_space()
- class Element(FiniteDimensionalAlgebraElement):
- """
- An element of a Euclidean Jordan algebra.
- """
-
- def __dir__(self):
- """
- Oh man, I should not be doing this. This hides the "disabled"
- methods ``left_matrix`` and ``matrix`` from introspection;
- in particular it removes them from tab-completion.
- """
- return filter(lambda s: s not in ['left_matrix', 'matrix'],
- dir(self.__class__) )
-
-
- def __init__(self, A, elt=None):
- """
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
- ....: random_eja)
-
- EXAMPLES:
-
- The identity in `S^n` is converted to the identity in the EJA::
-
- sage: J = RealSymmetricEJA(3)
- sage: I = matrix.identity(QQ,3)
- sage: J(I) == J.one()
- True
-
- This skew-symmetric matrix can't be represented in the EJA::
-
- sage: J = RealSymmetricEJA(3)
- sage: A = matrix(QQ,3, lambda i,j: i-j)
- sage: J(A)
- Traceback (most recent call last):
- ...
- ArithmeticError: vector is not in free module
-
- TESTS:
-
- Ensure that we can convert any element of the parent's
- underlying vector space back into an algebra element whose
- vector representation is what we started with::
-
- sage: set_random_seed()
- sage: J = random_eja()
- sage: v = J.vector_space().random_element()
- sage: J(v).vector() == v
- True
-
- """
- # Goal: if we're given a matrix, and if it lives in our
- # parent algebra's "natural ambient space," convert it
- # into an algebra element.
- #
- # The catch is, we make a recursive call after converting
- # the given matrix into a vector that lives in the algebra.
- # This we need to try the parent class initializer first,
- # to avoid recursing forever if we're given something that
- # already fits into the algebra, but also happens to live
- # in the parent's "natural ambient space" (this happens with
- # vectors in R^n).
- try:
- FiniteDimensionalAlgebraElement.__init__(self, A, elt)
- except ValueError:
- natural_basis = A.natural_basis()
- if elt in natural_basis[0].matrix_space():
- # Thanks for nothing! Matrix spaces aren't vector
- # spaces in Sage, so we have to figure out its
- # natural-basis coordinates ourselves.
- V = VectorSpace(elt.base_ring(), elt.nrows()**2)
- W = V.span( _mat2vec(s) for s in natural_basis )
- coords = W.coordinates(_mat2vec(elt))
- FiniteDimensionalAlgebraElement.__init__(self, A, coords)
-
- def __pow__(self, n):
- """
- Return ``self`` raised to the power ``n``.
-
- Jordan algebras are always power-associative; see for
- example Faraut and Koranyi, Proposition II.1.2 (ii).
-
- We have to override this because our superclass uses row
- vectors instead of column vectors! We, on the other hand,
- assume column vectors everywhere.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import random_eja
-
- TESTS:
-
- The definition of `x^2` is the unambiguous `x*x`::
-
- sage: set_random_seed()
- sage: x = random_eja().random_element()
- sage: x*x == (x^2)
- True
-
- A few examples of power-associativity::
-
- sage: set_random_seed()
- sage: x = random_eja().random_element()
- sage: x*(x*x)*(x*x) == x^5
- True
- sage: (x*x)*(x*x*x) == x^5
- True
-
- We also know that powers operator-commute (Koecher, Chapter
- III, Corollary 1)::
-
- sage: set_random_seed()
- sage: x = random_eja().random_element()
- sage: m = ZZ.random_element(0,10)
- sage: n = ZZ.random_element(0,10)
- sage: Lxm = (x^m).operator()
- sage: Lxn = (x^n).operator()
- sage: Lxm*Lxn == Lxn*Lxm
- True
-
- """
- if n == 0:
- return self.parent().one()
- elif n == 1:
- return self
- else:
- return (self.operator()**(n-1))(self)
-
-
- def apply_univariate_polynomial(self, p):
- """
- Apply the univariate polynomial ``p`` to this element.
-
- A priori, SageMath won't allow us to apply a univariate
- polynomial to an element of an EJA, because we don't know
- that EJAs are rings (they are usually not associative). Of
- course, we know that EJAs are power-associative, so the
- operation is ultimately kosher. This function sidesteps
- the CAS to get the answer we want and expect.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
- ....: random_eja)
-
- EXAMPLES::
-
- sage: R = PolynomialRing(QQ, 't')
- sage: t = R.gen(0)
- sage: p = t^4 - t^3 + 5*t - 2
- sage: J = RealCartesianProductEJA(5)
- sage: J.one().apply_univariate_polynomial(p) == 3*J.one()
- True
-
- TESTS:
-
- We should always get back an element of the algebra::
-
- sage: set_random_seed()
- sage: p = PolynomialRing(QQ, 't').random_element()
- sage: J = random_eja()
- sage: x = J.random_element()
- sage: x.apply_univariate_polynomial(p) in J
- True
-
- """
- if len(p.variables()) > 1:
- raise ValueError("not a univariate polynomial")
- P = self.parent()
- R = P.base_ring()
- # Convert the coeficcients to the parent's base ring,
- # because a priori they might live in an (unnecessarily)
- # larger ring for which P.sum() would fail below.
- cs = [ R(c) for c in p.coefficients(sparse=False) ]
- return P.sum( cs[k]*(self**k) for k in range(len(cs)) )
-
-
- def characteristic_polynomial(self):
- """
- Return the characteristic polynomial of this element.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import RealCartesianProductEJA
-
- EXAMPLES:
-
- The rank of `R^3` is three, and the minimal polynomial of
- the identity element is `(t-1)` from which it follows that
- the characteristic polynomial should be `(t-1)^3`::
-
- sage: J = RealCartesianProductEJA(3)
- sage: J.one().characteristic_polynomial()
- t^3 - 3*t^2 + 3*t - 1
-
- Likewise, the characteristic of the zero element in the
- rank-three algebra `R^{n}` should be `t^{3}`::
-
- sage: J = RealCartesianProductEJA(3)
- sage: J.zero().characteristic_polynomial()
- t^3
-
- TESTS:
-
- The characteristic polynomial of an element should evaluate
- to zero on that element::
-
- sage: set_random_seed()
- sage: x = RealCartesianProductEJA(3).random_element()
- sage: p = x.characteristic_polynomial()
- sage: x.apply_univariate_polynomial(p)
- 0
-
- """
- p = self.parent().characteristic_polynomial()
- return p(*self.vector())
-
-
- def inner_product(self, other):
- """
- Return the parent algebra's inner product of myself and ``other``.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import (
- ....: ComplexHermitianEJA,
- ....: JordanSpinEJA,
- ....: QuaternionHermitianEJA,
- ....: RealSymmetricEJA,
- ....: random_eja)
-
- EXAMPLES:
-
- The inner product in the Jordan spin algebra is the usual
- inner product on `R^n` (this example only works because the
- basis for the Jordan algebra is the standard basis in `R^n`)::
-
- sage: J = JordanSpinEJA(3)
- sage: x = vector(QQ,[1,2,3])
- sage: y = vector(QQ,[4,5,6])
- sage: x.inner_product(y)
- 32
- sage: J(x).inner_product(J(y))
- 32
-
- The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
- multiplication is the usual matrix multiplication in `S^n`,
- so the inner product of the identity matrix with itself
- should be the `n`::
-
- sage: J = RealSymmetricEJA(3)
- sage: J.one().inner_product(J.one())
- 3
-
- Likewise, the inner product on `C^n` is `<X,Y> =
- Re(trace(X*Y))`, where we must necessarily take the real
- part because the product of Hermitian matrices may not be
- Hermitian::
-
- sage: J = ComplexHermitianEJA(3)
- sage: J.one().inner_product(J.one())
- 3
-
- Ditto for the quaternions::
-
- sage: J = QuaternionHermitianEJA(3)
- sage: J.one().inner_product(J.one())
- 3
-
- TESTS:
-
- Ensure that we can always compute an inner product, and that
- it gives us back a real number::
-
- sage: set_random_seed()
- sage: J = random_eja()
- sage: x = J.random_element()
- sage: y = J.random_element()
- sage: x.inner_product(y) in RR
- True
-
- """
- P = self.parent()
- if not other in P:
- raise TypeError("'other' must live in the same algebra")
-
- return P.inner_product(self, other)
-
-
- def operator_commutes_with(self, other):
- """
- Return whether or not this element operator-commutes
- with ``other``.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import random_eja
-
- EXAMPLES:
-
- The definition of a Jordan algebra says that any element
- operator-commutes with its square::
-
- sage: set_random_seed()
- sage: x = random_eja().random_element()
- sage: x.operator_commutes_with(x^2)
- True
-
- TESTS:
-
- Test Lemma 1 from Chapter III of Koecher::
-
- sage: set_random_seed()
- sage: J = random_eja()
- sage: u = J.random_element()
- sage: v = J.random_element()
- sage: lhs = u.operator_commutes_with(u*v)
- sage: rhs = v.operator_commutes_with(u^2)
- sage: lhs == rhs
- True
-
- Test the first polarization identity from my notes, Koecher
- Chapter III, or from Baes (2.3)::
-
- sage: set_random_seed()
- sage: J = random_eja()
- sage: x = J.random_element()
- sage: y = J.random_element()
- sage: Lx = x.operator()
- sage: Ly = y.operator()
- sage: Lxx = (x*x).operator()
- sage: Lxy = (x*y).operator()
- sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
- True
-
- Test the second polarization identity from my notes or from
- Baes (2.4)::
-
- sage: set_random_seed()
- sage: J = random_eja()
- sage: x = J.random_element()
- sage: y = J.random_element()
- sage: z = J.random_element()
- sage: Lx = x.operator()
- sage: Ly = y.operator()
- sage: Lz = z.operator()
- sage: Lzy = (z*y).operator()
- sage: Lxy = (x*y).operator()
- sage: Lxz = (x*z).operator()
- sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
- True
-
- Test the third polarization identity from my notes or from
- Baes (2.5)::
-
- sage: set_random_seed()
- sage: J = random_eja()
- sage: u = J.random_element()
- sage: y = J.random_element()
- sage: z = J.random_element()
- sage: Lu = u.operator()
- sage: Ly = y.operator()
- sage: Lz = z.operator()
- sage: Lzy = (z*y).operator()
- sage: Luy = (u*y).operator()
- sage: Luz = (u*z).operator()
- sage: Luyz = (u*(y*z)).operator()
- sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
- sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
- sage: bool(lhs == rhs)
- True
-
- """
- if not other in self.parent():
- raise TypeError("'other' must live in the same algebra")
-
- A = self.operator()
- B = other.operator()
- return (A*B == B*A)
-
-
- def det(self):
- """
- Return my determinant, the product of my eigenvalues.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
- ....: random_eja)
-
- EXAMPLES::
-
- sage: J = JordanSpinEJA(2)
- sage: e0,e1 = J.gens()
- sage: x = sum( J.gens() )
- sage: x.det()
- 0
-
- ::
-
- sage: J = JordanSpinEJA(3)
- sage: e0,e1,e2 = J.gens()
- sage: x = sum( J.gens() )
- sage: x.det()
- -1
-
- TESTS:
-
- An element is invertible if and only if its determinant is
- non-zero::
-
- sage: set_random_seed()
- sage: x = random_eja().random_element()
- sage: x.is_invertible() == (x.det() != 0)
- True
-
- """
- P = self.parent()
- r = P.rank()
- p = P._charpoly_coeff(0)
- # The _charpoly_coeff function already adds the factor of
- # -1 to ensure that _charpoly_coeff(0) is really what
- # appears in front of t^{0} in the charpoly. However,
- # we want (-1)^r times THAT for the determinant.
- return ((-1)**r)*p(*self.vector())
-
-
- def inverse(self):
- """
- Return the Jordan-multiplicative inverse of this element.
-
- ALGORITHM:
-
- We appeal to the quadratic representation as in Koecher's
- Theorem 12 in Chapter III, Section 5.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
- ....: random_eja)
-
- EXAMPLES:
-
- The inverse in the spin factor algebra is given in Alizadeh's
- Example 11.11::
-
- sage: set_random_seed()
- sage: n = ZZ.random_element(1,10)
- sage: J = JordanSpinEJA(n)
- sage: x = J.random_element()
- sage: while not x.is_invertible():
- ....: x = J.random_element()
- sage: x_vec = x.vector()
- sage: x0 = x_vec[0]
- sage: x_bar = x_vec[1:]
- sage: coeff = ~(x0^2 - x_bar.inner_product(x_bar))
- sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
- sage: x_inverse = coeff*inv_vec
- sage: x.inverse() == J(x_inverse)
- True
-
- TESTS:
-
- The identity element is its own inverse::
-
- sage: set_random_seed()
- sage: J = random_eja()
- sage: J.one().inverse() == J.one()
- True
-
- If an element has an inverse, it acts like one::
-
- sage: set_random_seed()
- sage: J = random_eja()
- sage: x = J.random_element()
- sage: (not x.is_invertible()) or (x.inverse()*x == J.one())
- True
-
- The inverse of the inverse is what we started with::
-
- sage: set_random_seed()
- sage: J = random_eja()
- sage: x = J.random_element()
- sage: (not x.is_invertible()) or (x.inverse().inverse() == x)
- True
-
- The zero element is never invertible::
-
- sage: set_random_seed()
- sage: J = random_eja().zero().inverse()
- Traceback (most recent call last):
- ...
- ValueError: element is not invertible
-
- """
- if not self.is_invertible():
- raise ValueError("element is not invertible")
-
- return (~self.quadratic_representation())(self)
-
-
- def is_invertible(self):
- """
- Return whether or not this element is invertible.
-
- ALGORITHM:
-
- The usual way to do this is to check if the determinant is
- zero, but we need the characteristic polynomial for the
- determinant. The minimal polynomial is a lot easier to get,
- so we use Corollary 2 in Chapter V of Koecher to check
- whether or not the paren't algebra's zero element is a root
- of this element's minimal polynomial.
-
- Beware that we can't use the superclass method, because it
- relies on the algebra being associative.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import random_eja
-
- TESTS:
-
- The identity element is always invertible::
-
- sage: set_random_seed()
- sage: J = random_eja()
- sage: J.one().is_invertible()
- True
-
- The zero element is never invertible::
-
- sage: set_random_seed()
- sage: J = random_eja()
- sage: J.zero().is_invertible()
- False
-
- """
- zero = self.parent().zero()
- p = self.minimal_polynomial()
- return not (p(zero) == zero)
-
-
- def is_nilpotent(self):
- """
- Return whether or not some power of this element is zero.
-
- ALGORITHM:
-
- We use Theorem 5 in Chapter III of Koecher, which says that
- an element ``x`` is nilpotent if and only if ``x.operator()``
- is nilpotent. And it is a basic fact of linear algebra that
- an operator on an `n`-dimensional space is nilpotent if and
- only if, when raised to the `n`th power, it equals the zero
- operator (for example, see Axler Corollary 8.8).
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
- ....: random_eja)
-
- EXAMPLES::
-
- sage: J = JordanSpinEJA(3)
- sage: x = sum(J.gens())
- sage: x.is_nilpotent()
- False
-
- TESTS:
-
- The identity element is never nilpotent::
-
- sage: set_random_seed()
- sage: random_eja().one().is_nilpotent()
- False
-
- The additive identity is always nilpotent::
-
- sage: set_random_seed()
- sage: random_eja().zero().is_nilpotent()
- True
-
- """
- P = self.parent()
- zero_operator = P.zero().operator()
- return self.operator()**P.dimension() == zero_operator
-
-
- def is_regular(self):
- """
- Return whether or not this is a regular element.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
- ....: random_eja)
-
- EXAMPLES:
-
- The identity element always has degree one, but any element
- linearly-independent from it is regular::
-
- sage: J = JordanSpinEJA(5)
- sage: J.one().is_regular()
- False
- sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
- sage: for x in J.gens():
- ....: (J.one() + x).is_regular()
- False
- True
- True
- True
- True
-
- TESTS:
-
- The zero element should never be regular::
-
- sage: set_random_seed()
- sage: J = random_eja()
- sage: J.zero().is_regular()
- False
-
- The unit element isn't regular unless the algebra happens to
- consist of only its scalar multiples::
-
- sage: set_random_seed()
- sage: J = random_eja()
- sage: J.dimension() == 1 or not J.one().is_regular()
- True
-
- """
- return self.degree() == self.parent().rank()
-
-
- def degree(self):
- """
- Return the degree of this element, which is defined to be
- the degree of its minimal polynomial.
-
- ALGORITHM:
-
- For now, we skip the messy minimal polynomial computation
- and instead return the dimension of the vector space spanned
- by the powers of this element. The latter is a bit more
- straightforward to compute.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
- ....: random_eja)
-
- EXAMPLES::
-
- sage: J = JordanSpinEJA(4)
- sage: J.one().degree()
- 1
- sage: e0,e1,e2,e3 = J.gens()
- sage: (e0 - e1).degree()
- 2
-
- In the spin factor algebra (of rank two), all elements that
- aren't multiples of the identity are regular::
-
- sage: set_random_seed()
- sage: n = ZZ.random_element(1,10)
- sage: J = JordanSpinEJA(n)
- sage: x = J.random_element()
- sage: x == x.coefficient(0)*J.one() or x.degree() == 2
- True
-
- TESTS:
-
- The zero and unit elements are both of degree one::
-
- sage: set_random_seed()
- sage: J = random_eja()
- sage: J.zero().degree()
- 1
- sage: J.one().degree()
- 1
-
- Our implementation agrees with the definition::
-
- sage: set_random_seed()
- sage: x = random_eja().random_element()
- sage: x.degree() == x.minimal_polynomial().degree()
- True
-
- """
- return self.span_of_powers().dimension()
-
-
- def left_matrix(self):
- """
- Our parent class defines ``left_matrix`` and ``matrix``
- methods whose names are misleading. We don't want them.
- """
- raise NotImplementedError("use operator().matrix() instead")
-
- matrix = left_matrix
-
-
- def minimal_polynomial(self):
- """
- Return the minimal polynomial of this element,
- as a function of the variable `t`.
-
- ALGORITHM:
-
- We restrict ourselves to the associative subalgebra
- generated by this element, and then return the minimal
- polynomial of this element's operator matrix (in that
- subalgebra). This works by Baes Proposition 2.3.16.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
- ....: random_eja)
-
- TESTS:
-
- The minimal polynomial of the identity and zero elements are
- always the same::
-
- sage: set_random_seed()
- sage: J = random_eja()
- sage: J.one().minimal_polynomial()
- t - 1
- sage: J.zero().minimal_polynomial()
- t
-
- The degree of an element is (by one definition) the degree
- of its minimal polynomial::
-
- sage: set_random_seed()
- sage: x = random_eja().random_element()
- sage: x.degree() == x.minimal_polynomial().degree()
- True
-
- The minimal polynomial and the characteristic polynomial coincide
- and are known (see Alizadeh, Example 11.11) for all elements of
- the spin factor algebra that aren't scalar multiples of the
- identity::
-
- sage: set_random_seed()
- sage: n = ZZ.random_element(2,10)
- sage: J = JordanSpinEJA(n)
- sage: y = J.random_element()
- sage: while y == y.coefficient(0)*J.one():
- ....: y = J.random_element()
- sage: y0 = y.vector()[0]
- sage: y_bar = y.vector()[1:]
- sage: actual = y.minimal_polynomial()
- sage: t = PolynomialRing(J.base_ring(),'t').gen(0)
- sage: expected = t^2 - 2*y0*t + (y0^2 - norm(y_bar)^2)
- sage: bool(actual == expected)
- True
-
- The minimal polynomial should always kill its element::
-
- sage: set_random_seed()
- sage: x = random_eja().random_element()
- sage: p = x.minimal_polynomial()
- sage: x.apply_univariate_polynomial(p)
- 0
-
- """
- V = self.span_of_powers()
- assoc_subalg = self.subalgebra_generated_by()
- # Mis-design warning: the basis used for span_of_powers()
- # and subalgebra_generated_by() must be the same, and in
- # the same order!
- elt = assoc_subalg(V.coordinates(self.vector()))
- return elt.operator().minimal_polynomial()
-
-
-
- def natural_representation(self):
- """
- Return a more-natural representation of this element.
-
- Every finite-dimensional Euclidean Jordan Algebra is a
- direct sum of five simple algebras, four of which comprise
- Hermitian matrices. This method returns the original
- "natural" representation of this element as a Hermitian
- matrix, if it has one. If not, you get the usual representation.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
- ....: QuaternionHermitianEJA)
-
- EXAMPLES::
-
- sage: J = ComplexHermitianEJA(3)
- sage: J.one()
- e0 + e5 + e8
- sage: J.one().natural_representation()
- [1 0 0 0 0 0]
- [0 1 0 0 0 0]
- [0 0 1 0 0 0]
- [0 0 0 1 0 0]
- [0 0 0 0 1 0]
- [0 0 0 0 0 1]
-
- ::
-
- sage: J = QuaternionHermitianEJA(3)
- sage: J.one()
- e0 + e9 + e14
- sage: J.one().natural_representation()
- [1 0 0 0 0 0 0 0 0 0 0 0]
- [0 1 0 0 0 0 0 0 0 0 0 0]
- [0 0 1 0 0 0 0 0 0 0 0 0]
- [0 0 0 1 0 0 0 0 0 0 0 0]
- [0 0 0 0 1 0 0 0 0 0 0 0]
- [0 0 0 0 0 1 0 0 0 0 0 0]
- [0 0 0 0 0 0 1 0 0 0 0 0]
- [0 0 0 0 0 0 0 1 0 0 0 0]
- [0 0 0 0 0 0 0 0 1 0 0 0]
- [0 0 0 0 0 0 0 0 0 1 0 0]
- [0 0 0 0 0 0 0 0 0 0 1 0]
- [0 0 0 0 0 0 0 0 0 0 0 1]
-
- """
- B = self.parent().natural_basis()
- W = B[0].matrix_space()
- return W.linear_combination(zip(self.vector(), B))
-
-
- def operator(self):
- """
- Return the left-multiplication-by-this-element
- operator on the ambient algebra.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import random_eja
-
- TESTS::
-
- sage: set_random_seed()
- sage: J = random_eja()
- sage: x = J.random_element()
- sage: y = J.random_element()
- sage: x.operator()(y) == x*y
- True
- sage: y.operator()(x) == x*y
- True
-
- """
- P = self.parent()
- fda_elt = FiniteDimensionalAlgebraElement(P, self)
- return FiniteDimensionalEuclideanJordanAlgebraOperator(
- P,
- P,
- fda_elt.matrix().transpose() )
-
-
- def quadratic_representation(self, other=None):
- """
- Return the quadratic representation of this element.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
- ....: random_eja)
-
- EXAMPLES:
-
- The explicit form in the spin factor algebra is given by
- Alizadeh's Example 11.12::
-
- sage: set_random_seed()
- sage: n = ZZ.random_element(1,10)
- sage: J = JordanSpinEJA(n)
- sage: x = J.random_element()
- sage: x_vec = x.vector()
- sage: x0 = x_vec[0]
- sage: x_bar = x_vec[1:]
- sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
- sage: B = 2*x0*x_bar.row()
- sage: C = 2*x0*x_bar.column()
- sage: D = matrix.identity(QQ, n-1)
- sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
- sage: D = D + 2*x_bar.tensor_product(x_bar)
- sage: Q = matrix.block(2,2,[A,B,C,D])
- sage: Q == x.quadratic_representation().matrix()
- True
-
- Test all of the properties from Theorem 11.2 in Alizadeh::
-
- sage: set_random_seed()
- sage: J = random_eja()
- sage: x = J.random_element()
- sage: y = J.random_element()
- sage: Lx = x.operator()
- sage: Lxx = (x*x).operator()
- sage: Qx = x.quadratic_representation()
- sage: Qy = y.quadratic_representation()
- sage: Qxy = x.quadratic_representation(y)
- sage: Qex = J.one().quadratic_representation(x)
- sage: n = ZZ.random_element(10)
- sage: Qxn = (x^n).quadratic_representation()
-
- Property 1:
-
- sage: 2*Qxy == (x+y).quadratic_representation() - Qx - Qy
- True
-
- Property 2 (multiply on the right for :trac:`28272`):
-
- sage: alpha = QQ.random_element()
- sage: (alpha*x).quadratic_representation() == Qx*(alpha^2)
- True
-
- Property 3:
-
- sage: not x.is_invertible() or ( Qx(x.inverse()) == x )
- True
-
- sage: not x.is_invertible() or (
- ....: ~Qx
- ....: ==
- ....: x.inverse().quadratic_representation() )
- True
-
- sage: Qxy(J.one()) == x*y
- True
-
- Property 4:
-
- sage: not x.is_invertible() or (
- ....: x.quadratic_representation(x.inverse())*Qx
- ....: == Qx*x.quadratic_representation(x.inverse()) )
- True
-
- sage: not x.is_invertible() or (
- ....: x.quadratic_representation(x.inverse())*Qx
- ....: ==
- ....: 2*x.operator()*Qex - Qx )
- True
-
- sage: 2*x.operator()*Qex - Qx == Lxx
- True
-
- Property 5:
-
- sage: Qy(x).quadratic_representation() == Qy*Qx*Qy
- True
-
- Property 6:
-
- sage: Qxn == (Qx)^n
- True
-
- Property 7:
-
- sage: not x.is_invertible() or (
- ....: Qx*x.inverse().operator() == Lx )
- True
-
- Property 8:
-
- sage: not x.operator_commutes_with(y) or (
- ....: Qx(y)^n == Qxn(y^n) )
- True
-
- """
- if other is None:
- other=self
- elif not other in self.parent():
- raise TypeError("'other' must live in the same algebra")
-
- L = self.operator()
- M = other.operator()
- return ( L*M + M*L - (self*other).operator() )
-
-
- def span_of_powers(self):
- """
- Return the vector space spanned by successive powers of
- this element.
- """
- # The dimension of the subalgebra can't be greater than
- # the big algebra, so just put everything into a list
- # and let span() get rid of the excess.
- #
- # We do the extra ambient_vector_space() in case we're messing
- # with polynomials and the direct parent is a module.
- V = self.parent().vector_space()
- return V.span( (self**d).vector() for d in xrange(V.dimension()) )
-
-
- def subalgebra_generated_by(self):
- """
- Return the associative subalgebra of the parent EJA generated
- by this element.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import random_eja
-
- TESTS::
-
- sage: set_random_seed()
- sage: x = random_eja().random_element()
- sage: x.subalgebra_generated_by().is_associative()
- True
-
- Squaring in the subalgebra should work the same as in
- the superalgebra::
-
- sage: set_random_seed()
- sage: x = random_eja().random_element()
- sage: u = x.subalgebra_generated_by().random_element()
- sage: u.operator()(u) == u^2
- True
-
- """
- # First get the subspace spanned by the powers of myself...
- V = self.span_of_powers()
- F = self.base_ring()
-
- # Now figure out the entries of the right-multiplication
- # matrix for the successive basis elements b0, b1,... of
- # that subspace.
- mats = []
- for b_right in V.basis():
- eja_b_right = self.parent()(b_right)
- b_right_rows = []
- # The first row of the right-multiplication matrix by
- # b1 is what we get if we apply that matrix to b1. The
- # second row of the right multiplication matrix by b1
- # is what we get when we apply that matrix to b2...
- #
- # IMPORTANT: this assumes that all vectors are COLUMN
- # vectors, unlike our superclass (which uses row vectors).
- for b_left in V.basis():
- eja_b_left = self.parent()(b_left)
- # Multiply in the original EJA, but then get the
- # coordinates from the subalgebra in terms of its
- # basis.
- this_row = V.coordinates((eja_b_left*eja_b_right).vector())
- b_right_rows.append(this_row)
- b_right_matrix = matrix(F, b_right_rows)
- mats.append(b_right_matrix)
-
- # It's an algebra of polynomials in one element, and EJAs
- # are power-associative.
- #
- # TODO: choose generator names intelligently.
- #
- # The rank is the highest possible degree of a minimal polynomial,
- # and is bounded above by the dimension. We know in this case that
- # there's an element whose minimal polynomial has the same degree
- # as the space's dimension, so that must be its rank too.
- return FiniteDimensionalEuclideanJordanAlgebra(
- F,
- mats,
- V.dimension(),
- assume_associative=True,
- names='f')
-
-
- def subalgebra_idempotent(self):
- """
- Find an idempotent in the associative subalgebra I generate
- using Proposition 2.3.5 in Baes.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import random_eja
-
- TESTS::
-
- sage: set_random_seed()
- sage: J = random_eja()
- sage: x = J.random_element()
- sage: while x.is_nilpotent():
- ....: x = J.random_element()
- sage: c = x.subalgebra_idempotent()
- sage: c^2 == c
- True
-
- """
- if self.is_nilpotent():
- raise ValueError("this only works with non-nilpotent elements!")
-
- V = self.span_of_powers()
- J = self.subalgebra_generated_by()
- # Mis-design warning: the basis used for span_of_powers()
- # and subalgebra_generated_by() must be the same, and in
- # the same order!
- u = J(V.coordinates(self.vector()))
-
- # The image of the matrix of left-u^m-multiplication
- # will be minimal for some natural number s...
- s = 0
- minimal_dim = V.dimension()
- for i in xrange(1, V.dimension()):
- this_dim = (u**i).operator().matrix().image().dimension()
- if this_dim < minimal_dim:
- minimal_dim = this_dim
- s = i
-
- # Now minimal_matrix should correspond to the smallest
- # non-zero subspace in Baes's (or really, Koecher's)
- # proposition.
- #
- # However, we need to restrict the matrix to work on the
- # subspace... or do we? Can't we just solve, knowing that
- # A(c) = u^(s+1) should have a solution in the big space,
- # too?
- #
- # Beware, solve_right() means that we're using COLUMN vectors.
- # Our FiniteDimensionalAlgebraElement superclass uses rows.
- u_next = u**(s+1)
- A = u_next.operator().matrix()
- c_coordinates = A.solve_right(u_next.vector())
-
- # Now c_coordinates is the idempotent we want, but it's in
- # the coordinate system of the subalgebra.
- #
- # We need the basis for J, but as elements of the parent algebra.
- #
- basis = [self.parent(v) for v in V.basis()]
- return self.parent().linear_combination(zip(c_coordinates, basis))
-
-
- def trace(self):
- """
- Return my trace, the sum of my eigenvalues.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
- ....: RealCartesianProductEJA,
- ....: random_eja)
-
- EXAMPLES::
-
- sage: J = JordanSpinEJA(3)
- sage: x = sum(J.gens())
- sage: x.trace()
- 2
-
- ::
-
- sage: J = RealCartesianProductEJA(5)
- sage: J.one().trace()
- 5
-
- TESTS:
-
- The trace of an element is a real number::
-
- sage: set_random_seed()
- sage: J = random_eja()
- sage: J.random_element().trace() in J.base_ring()
- True
-
- """
- P = self.parent()
- r = P.rank()
- p = P._charpoly_coeff(r-1)
- # The _charpoly_coeff function already adds the factor of
- # -1 to ensure that _charpoly_coeff(r-1) is really what
- # appears in front of t^{r-1} in the charpoly. However,
- # we want the negative of THAT for the trace.
- return -p(*self.vector())
-
-
- def trace_inner_product(self, other):
- """
- Return the trace inner product of myself and ``other``.
-
- SETUP::
-
- sage: from mjo.eja.eja_algebra import random_eja
-
- TESTS:
-
- The trace inner product is commutative::
-
- sage: set_random_seed()
- sage: J = random_eja()
- sage: x = J.random_element(); y = J.random_element()
- sage: x.trace_inner_product(y) == y.trace_inner_product(x)
- True
-
- The trace inner product is bilinear::
-
- sage: set_random_seed()
- sage: J = random_eja()
- sage: x = J.random_element()
- sage: y = J.random_element()
- sage: z = J.random_element()
- sage: a = QQ.random_element();
- sage: actual = (a*(x+z)).trace_inner_product(y)
- sage: expected = ( a*x.trace_inner_product(y) +
- ....: a*z.trace_inner_product(y) )
- sage: actual == expected
- True
- sage: actual = x.trace_inner_product(a*(y+z))
- sage: expected = ( a*x.trace_inner_product(y) +
- ....: a*x.trace_inner_product(z) )
- sage: actual == expected
- True
-
- The trace inner product satisfies the compatibility
- condition in the definition of a Euclidean Jordan algebra::
-
- sage: set_random_seed()
- sage: J = random_eja()
- sage: x = J.random_element()
- sage: y = J.random_element()
- sage: z = J.random_element()
- sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
- True
-
- """
- if not other in self.parent():
- raise TypeError("'other' must live in the same algebra")
-
- return (self*other).trace()
+ Element = FiniteDimensionalEuclideanJordanAlgebraElement
class RealCartesianProductEJA(FiniteDimensionalEuclideanJordanAlgebra):
return tuple(S)
-def _mat2vec(m):
- return vector(m.base_ring(), m.list())
-
-def _vec2mat(v):
- return matrix(v.base_ring(), sqrt(v.degree()), v.list())
def _multiplication_table_from_matrix_basis(basis):
"""
--- /dev/null
+from sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra_element import FiniteDimensionalAlgebraElement
+from sage.matrix.constructor import matrix
+from sage.modules.free_module import VectorSpace
+
+# TODO: make this unnecessary somehow.
+from sage.misc.lazy_import import lazy_import
+lazy_import('mjo.eja.eja_algebra', 'FiniteDimensionalEuclideanJordanAlgebra')
+from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
+from mjo.eja.eja_utils import _mat2vec
+
+class FiniteDimensionalEuclideanJordanAlgebraElement(FiniteDimensionalAlgebraElement):
+ """
+ An element of a Euclidean Jordan algebra.
+ """
+
+ def __dir__(self):
+ """
+ Oh man, I should not be doing this. This hides the "disabled"
+ methods ``left_matrix`` and ``matrix`` from introspection;
+ in particular it removes them from tab-completion.
+ """
+ return filter(lambda s: s not in ['left_matrix', 'matrix'],
+ dir(self.__class__) )
+
+
+ def __init__(self, A, elt=None):
+ """
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
+ ....: random_eja)
+
+ EXAMPLES:
+
+ The identity in `S^n` is converted to the identity in the EJA::
+
+ sage: J = RealSymmetricEJA(3)
+ sage: I = matrix.identity(QQ,3)
+ sage: J(I) == J.one()
+ True
+
+ This skew-symmetric matrix can't be represented in the EJA::
+
+ sage: J = RealSymmetricEJA(3)
+ sage: A = matrix(QQ,3, lambda i,j: i-j)
+ sage: J(A)
+ Traceback (most recent call last):
+ ...
+ ArithmeticError: vector is not in free module
+
+ TESTS:
+
+ Ensure that we can convert any element of the parent's
+ underlying vector space back into an algebra element whose
+ vector representation is what we started with::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: v = J.vector_space().random_element()
+ sage: J(v).vector() == v
+ True
+
+ """
+ # Goal: if we're given a matrix, and if it lives in our
+ # parent algebra's "natural ambient space," convert it
+ # into an algebra element.
+ #
+ # The catch is, we make a recursive call after converting
+ # the given matrix into a vector that lives in the algebra.
+ # This we need to try the parent class initializer first,
+ # to avoid recursing forever if we're given something that
+ # already fits into the algebra, but also happens to live
+ # in the parent's "natural ambient space" (this happens with
+ # vectors in R^n).
+ try:
+ FiniteDimensionalAlgebraElement.__init__(self, A, elt)
+ except ValueError:
+ natural_basis = A.natural_basis()
+ if elt in natural_basis[0].matrix_space():
+ # Thanks for nothing! Matrix spaces aren't vector
+ # spaces in Sage, so we have to figure out its
+ # natural-basis coordinates ourselves.
+ V = VectorSpace(elt.base_ring(), elt.nrows()**2)
+ W = V.span( _mat2vec(s) for s in natural_basis )
+ coords = W.coordinates(_mat2vec(elt))
+ FiniteDimensionalAlgebraElement.__init__(self, A, coords)
+
+ def __pow__(self, n):
+ """
+ Return ``self`` raised to the power ``n``.
+
+ Jordan algebras are always power-associative; see for
+ example Faraut and Koranyi, Proposition II.1.2 (ii).
+
+ We have to override this because our superclass uses row
+ vectors instead of column vectors! We, on the other hand,
+ assume column vectors everywhere.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import random_eja
+
+ TESTS:
+
+ The definition of `x^2` is the unambiguous `x*x`::
+
+ sage: set_random_seed()
+ sage: x = random_eja().random_element()
+ sage: x*x == (x^2)
+ True
+
+ A few examples of power-associativity::
+
+ sage: set_random_seed()
+ sage: x = random_eja().random_element()
+ sage: x*(x*x)*(x*x) == x^5
+ True
+ sage: (x*x)*(x*x*x) == x^5
+ True
+
+ We also know that powers operator-commute (Koecher, Chapter
+ III, Corollary 1)::
+
+ sage: set_random_seed()
+ sage: x = random_eja().random_element()
+ sage: m = ZZ.random_element(0,10)
+ sage: n = ZZ.random_element(0,10)
+ sage: Lxm = (x^m).operator()
+ sage: Lxn = (x^n).operator()
+ sage: Lxm*Lxn == Lxn*Lxm
+ True
+
+ """
+ if n == 0:
+ return self.parent().one()
+ elif n == 1:
+ return self
+ else:
+ return (self.operator()**(n-1))(self)
+
+
+ def apply_univariate_polynomial(self, p):
+ """
+ Apply the univariate polynomial ``p`` to this element.
+
+ A priori, SageMath won't allow us to apply a univariate
+ polynomial to an element of an EJA, because we don't know
+ that EJAs are rings (they are usually not associative). Of
+ course, we know that EJAs are power-associative, so the
+ operation is ultimately kosher. This function sidesteps
+ the CAS to get the answer we want and expect.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
+ ....: random_eja)
+
+ EXAMPLES::
+
+ sage: R = PolynomialRing(QQ, 't')
+ sage: t = R.gen(0)
+ sage: p = t^4 - t^3 + 5*t - 2
+ sage: J = RealCartesianProductEJA(5)
+ sage: J.one().apply_univariate_polynomial(p) == 3*J.one()
+ True
+
+ TESTS:
+
+ We should always get back an element of the algebra::
+
+ sage: set_random_seed()
+ sage: p = PolynomialRing(QQ, 't').random_element()
+ sage: J = random_eja()
+ sage: x = J.random_element()
+ sage: x.apply_univariate_polynomial(p) in J
+ True
+
+ """
+ if len(p.variables()) > 1:
+ raise ValueError("not a univariate polynomial")
+ P = self.parent()
+ R = P.base_ring()
+ # Convert the coeficcients to the parent's base ring,
+ # because a priori they might live in an (unnecessarily)
+ # larger ring for which P.sum() would fail below.
+ cs = [ R(c) for c in p.coefficients(sparse=False) ]
+ return P.sum( cs[k]*(self**k) for k in range(len(cs)) )
+
+
+ def characteristic_polynomial(self):
+ """
+ Return the characteristic polynomial of this element.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import RealCartesianProductEJA
+
+ EXAMPLES:
+
+ The rank of `R^3` is three, and the minimal polynomial of
+ the identity element is `(t-1)` from which it follows that
+ the characteristic polynomial should be `(t-1)^3`::
+
+ sage: J = RealCartesianProductEJA(3)
+ sage: J.one().characteristic_polynomial()
+ t^3 - 3*t^2 + 3*t - 1
+
+ Likewise, the characteristic of the zero element in the
+ rank-three algebra `R^{n}` should be `t^{3}`::
+
+ sage: J = RealCartesianProductEJA(3)
+ sage: J.zero().characteristic_polynomial()
+ t^3
+
+ TESTS:
+
+ The characteristic polynomial of an element should evaluate
+ to zero on that element::
+
+ sage: set_random_seed()
+ sage: x = RealCartesianProductEJA(3).random_element()
+ sage: p = x.characteristic_polynomial()
+ sage: x.apply_univariate_polynomial(p)
+ 0
+
+ """
+ p = self.parent().characteristic_polynomial()
+ return p(*self.vector())
+
+
+ def inner_product(self, other):
+ """
+ Return the parent algebra's inner product of myself and ``other``.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import (
+ ....: ComplexHermitianEJA,
+ ....: JordanSpinEJA,
+ ....: QuaternionHermitianEJA,
+ ....: RealSymmetricEJA,
+ ....: random_eja)
+
+ EXAMPLES:
+
+ The inner product in the Jordan spin algebra is the usual
+ inner product on `R^n` (this example only works because the
+ basis for the Jordan algebra is the standard basis in `R^n`)::
+
+ sage: J = JordanSpinEJA(3)
+ sage: x = vector(QQ,[1,2,3])
+ sage: y = vector(QQ,[4,5,6])
+ sage: x.inner_product(y)
+ 32
+ sage: J(x).inner_product(J(y))
+ 32
+
+ The inner product on `S^n` is `<X,Y> = trace(X*Y)`, where
+ multiplication is the usual matrix multiplication in `S^n`,
+ so the inner product of the identity matrix with itself
+ should be the `n`::
+
+ sage: J = RealSymmetricEJA(3)
+ sage: J.one().inner_product(J.one())
+ 3
+
+ Likewise, the inner product on `C^n` is `<X,Y> =
+ Re(trace(X*Y))`, where we must necessarily take the real
+ part because the product of Hermitian matrices may not be
+ Hermitian::
+
+ sage: J = ComplexHermitianEJA(3)
+ sage: J.one().inner_product(J.one())
+ 3
+
+ Ditto for the quaternions::
+
+ sage: J = QuaternionHermitianEJA(3)
+ sage: J.one().inner_product(J.one())
+ 3
+
+ TESTS:
+
+ Ensure that we can always compute an inner product, and that
+ it gives us back a real number::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: x = J.random_element()
+ sage: y = J.random_element()
+ sage: x.inner_product(y) in RR
+ True
+
+ """
+ P = self.parent()
+ if not other in P:
+ raise TypeError("'other' must live in the same algebra")
+
+ return P.inner_product(self, other)
+
+
+ def operator_commutes_with(self, other):
+ """
+ Return whether or not this element operator-commutes
+ with ``other``.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import random_eja
+
+ EXAMPLES:
+
+ The definition of a Jordan algebra says that any element
+ operator-commutes with its square::
+
+ sage: set_random_seed()
+ sage: x = random_eja().random_element()
+ sage: x.operator_commutes_with(x^2)
+ True
+
+ TESTS:
+
+ Test Lemma 1 from Chapter III of Koecher::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: u = J.random_element()
+ sage: v = J.random_element()
+ sage: lhs = u.operator_commutes_with(u*v)
+ sage: rhs = v.operator_commutes_with(u^2)
+ sage: lhs == rhs
+ True
+
+ Test the first polarization identity from my notes, Koecher
+ Chapter III, or from Baes (2.3)::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: x = J.random_element()
+ sage: y = J.random_element()
+ sage: Lx = x.operator()
+ sage: Ly = y.operator()
+ sage: Lxx = (x*x).operator()
+ sage: Lxy = (x*y).operator()
+ sage: bool(2*Lx*Lxy + Ly*Lxx == 2*Lxy*Lx + Lxx*Ly)
+ True
+
+ Test the second polarization identity from my notes or from
+ Baes (2.4)::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: x = J.random_element()
+ sage: y = J.random_element()
+ sage: z = J.random_element()
+ sage: Lx = x.operator()
+ sage: Ly = y.operator()
+ sage: Lz = z.operator()
+ sage: Lzy = (z*y).operator()
+ sage: Lxy = (x*y).operator()
+ sage: Lxz = (x*z).operator()
+ sage: bool(Lx*Lzy + Lz*Lxy + Ly*Lxz == Lzy*Lx + Lxy*Lz + Lxz*Ly)
+ True
+
+ Test the third polarization identity from my notes or from
+ Baes (2.5)::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: u = J.random_element()
+ sage: y = J.random_element()
+ sage: z = J.random_element()
+ sage: Lu = u.operator()
+ sage: Ly = y.operator()
+ sage: Lz = z.operator()
+ sage: Lzy = (z*y).operator()
+ sage: Luy = (u*y).operator()
+ sage: Luz = (u*z).operator()
+ sage: Luyz = (u*(y*z)).operator()
+ sage: lhs = Lu*Lzy + Lz*Luy + Ly*Luz
+ sage: rhs = Luyz + Ly*Lu*Lz + Lz*Lu*Ly
+ sage: bool(lhs == rhs)
+ True
+
+ """
+ if not other in self.parent():
+ raise TypeError("'other' must live in the same algebra")
+
+ A = self.operator()
+ B = other.operator()
+ return (A*B == B*A)
+
+
+ def det(self):
+ """
+ Return my determinant, the product of my eigenvalues.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+ ....: random_eja)
+
+ EXAMPLES::
+
+ sage: J = JordanSpinEJA(2)
+ sage: e0,e1 = J.gens()
+ sage: x = sum( J.gens() )
+ sage: x.det()
+ 0
+
+ ::
+
+ sage: J = JordanSpinEJA(3)
+ sage: e0,e1,e2 = J.gens()
+ sage: x = sum( J.gens() )
+ sage: x.det()
+ -1
+
+ TESTS:
+
+ An element is invertible if and only if its determinant is
+ non-zero::
+
+ sage: set_random_seed()
+ sage: x = random_eja().random_element()
+ sage: x.is_invertible() == (x.det() != 0)
+ True
+
+ """
+ P = self.parent()
+ r = P.rank()
+ p = P._charpoly_coeff(0)
+ # The _charpoly_coeff function already adds the factor of
+ # -1 to ensure that _charpoly_coeff(0) is really what
+ # appears in front of t^{0} in the charpoly. However,
+ # we want (-1)^r times THAT for the determinant.
+ return ((-1)**r)*p(*self.vector())
+
+
+ def inverse(self):
+ """
+ Return the Jordan-multiplicative inverse of this element.
+
+ ALGORITHM:
+
+ We appeal to the quadratic representation as in Koecher's
+ Theorem 12 in Chapter III, Section 5.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+ ....: random_eja)
+
+ EXAMPLES:
+
+ The inverse in the spin factor algebra is given in Alizadeh's
+ Example 11.11::
+
+ sage: set_random_seed()
+ sage: n = ZZ.random_element(1,10)
+ sage: J = JordanSpinEJA(n)
+ sage: x = J.random_element()
+ sage: while not x.is_invertible():
+ ....: x = J.random_element()
+ sage: x_vec = x.vector()
+ sage: x0 = x_vec[0]
+ sage: x_bar = x_vec[1:]
+ sage: coeff = ~(x0^2 - x_bar.inner_product(x_bar))
+ sage: inv_vec = x_vec.parent()([x0] + (-x_bar).list())
+ sage: x_inverse = coeff*inv_vec
+ sage: x.inverse() == J(x_inverse)
+ True
+
+ TESTS:
+
+ The identity element is its own inverse::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: J.one().inverse() == J.one()
+ True
+
+ If an element has an inverse, it acts like one::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: x = J.random_element()
+ sage: (not x.is_invertible()) or (x.inverse()*x == J.one())
+ True
+
+ The inverse of the inverse is what we started with::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: x = J.random_element()
+ sage: (not x.is_invertible()) or (x.inverse().inverse() == x)
+ True
+
+ The zero element is never invertible::
+
+ sage: set_random_seed()
+ sage: J = random_eja().zero().inverse()
+ Traceback (most recent call last):
+ ...
+ ValueError: element is not invertible
+
+ """
+ if not self.is_invertible():
+ raise ValueError("element is not invertible")
+
+ return (~self.quadratic_representation())(self)
+
+
+ def is_invertible(self):
+ """
+ Return whether or not this element is invertible.
+
+ ALGORITHM:
+
+ The usual way to do this is to check if the determinant is
+ zero, but we need the characteristic polynomial for the
+ determinant. The minimal polynomial is a lot easier to get,
+ so we use Corollary 2 in Chapter V of Koecher to check
+ whether or not the paren't algebra's zero element is a root
+ of this element's minimal polynomial.
+
+ Beware that we can't use the superclass method, because it
+ relies on the algebra being associative.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import random_eja
+
+ TESTS:
+
+ The identity element is always invertible::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: J.one().is_invertible()
+ True
+
+ The zero element is never invertible::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: J.zero().is_invertible()
+ False
+
+ """
+ zero = self.parent().zero()
+ p = self.minimal_polynomial()
+ return not (p(zero) == zero)
+
+
+ def is_nilpotent(self):
+ """
+ Return whether or not some power of this element is zero.
+
+ ALGORITHM:
+
+ We use Theorem 5 in Chapter III of Koecher, which says that
+ an element ``x`` is nilpotent if and only if ``x.operator()``
+ is nilpotent. And it is a basic fact of linear algebra that
+ an operator on an `n`-dimensional space is nilpotent if and
+ only if, when raised to the `n`th power, it equals the zero
+ operator (for example, see Axler Corollary 8.8).
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+ ....: random_eja)
+
+ EXAMPLES::
+
+ sage: J = JordanSpinEJA(3)
+ sage: x = sum(J.gens())
+ sage: x.is_nilpotent()
+ False
+
+ TESTS:
+
+ The identity element is never nilpotent::
+
+ sage: set_random_seed()
+ sage: random_eja().one().is_nilpotent()
+ False
+
+ The additive identity is always nilpotent::
+
+ sage: set_random_seed()
+ sage: random_eja().zero().is_nilpotent()
+ True
+
+ """
+ P = self.parent()
+ zero_operator = P.zero().operator()
+ return self.operator()**P.dimension() == zero_operator
+
+
+ def is_regular(self):
+ """
+ Return whether or not this is a regular element.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+ ....: random_eja)
+
+ EXAMPLES:
+
+ The identity element always has degree one, but any element
+ linearly-independent from it is regular::
+
+ sage: J = JordanSpinEJA(5)
+ sage: J.one().is_regular()
+ False
+ sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
+ sage: for x in J.gens():
+ ....: (J.one() + x).is_regular()
+ False
+ True
+ True
+ True
+ True
+
+ TESTS:
+
+ The zero element should never be regular::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: J.zero().is_regular()
+ False
+
+ The unit element isn't regular unless the algebra happens to
+ consist of only its scalar multiples::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: J.dimension() == 1 or not J.one().is_regular()
+ True
+
+ """
+ return self.degree() == self.parent().rank()
+
+
+ def degree(self):
+ """
+ Return the degree of this element, which is defined to be
+ the degree of its minimal polynomial.
+
+ ALGORITHM:
+
+ For now, we skip the messy minimal polynomial computation
+ and instead return the dimension of the vector space spanned
+ by the powers of this element. The latter is a bit more
+ straightforward to compute.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+ ....: random_eja)
+
+ EXAMPLES::
+
+ sage: J = JordanSpinEJA(4)
+ sage: J.one().degree()
+ 1
+ sage: e0,e1,e2,e3 = J.gens()
+ sage: (e0 - e1).degree()
+ 2
+
+ In the spin factor algebra (of rank two), all elements that
+ aren't multiples of the identity are regular::
+
+ sage: set_random_seed()
+ sage: n = ZZ.random_element(1,10)
+ sage: J = JordanSpinEJA(n)
+ sage: x = J.random_element()
+ sage: x == x.coefficient(0)*J.one() or x.degree() == 2
+ True
+
+ TESTS:
+
+ The zero and unit elements are both of degree one::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: J.zero().degree()
+ 1
+ sage: J.one().degree()
+ 1
+
+ Our implementation agrees with the definition::
+
+ sage: set_random_seed()
+ sage: x = random_eja().random_element()
+ sage: x.degree() == x.minimal_polynomial().degree()
+ True
+
+ """
+ return self.span_of_powers().dimension()
+
+
+ def left_matrix(self):
+ """
+ Our parent class defines ``left_matrix`` and ``matrix``
+ methods whose names are misleading. We don't want them.
+ """
+ raise NotImplementedError("use operator().matrix() instead")
+
+ matrix = left_matrix
+
+
+ def minimal_polynomial(self):
+ """
+ Return the minimal polynomial of this element,
+ as a function of the variable `t`.
+
+ ALGORITHM:
+
+ We restrict ourselves to the associative subalgebra
+ generated by this element, and then return the minimal
+ polynomial of this element's operator matrix (in that
+ subalgebra). This works by Baes Proposition 2.3.16.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+ ....: random_eja)
+
+ TESTS:
+
+ The minimal polynomial of the identity and zero elements are
+ always the same::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: J.one().minimal_polynomial()
+ t - 1
+ sage: J.zero().minimal_polynomial()
+ t
+
+ The degree of an element is (by one definition) the degree
+ of its minimal polynomial::
+
+ sage: set_random_seed()
+ sage: x = random_eja().random_element()
+ sage: x.degree() == x.minimal_polynomial().degree()
+ True
+
+ The minimal polynomial and the characteristic polynomial coincide
+ and are known (see Alizadeh, Example 11.11) for all elements of
+ the spin factor algebra that aren't scalar multiples of the
+ identity::
+
+ sage: set_random_seed()
+ sage: n = ZZ.random_element(2,10)
+ sage: J = JordanSpinEJA(n)
+ sage: y = J.random_element()
+ sage: while y == y.coefficient(0)*J.one():
+ ....: y = J.random_element()
+ sage: y0 = y.vector()[0]
+ sage: y_bar = y.vector()[1:]
+ sage: actual = y.minimal_polynomial()
+ sage: t = PolynomialRing(J.base_ring(),'t').gen(0)
+ sage: expected = t^2 - 2*y0*t + (y0^2 - norm(y_bar)^2)
+ sage: bool(actual == expected)
+ True
+
+ The minimal polynomial should always kill its element::
+
+ sage: set_random_seed()
+ sage: x = random_eja().random_element()
+ sage: p = x.minimal_polynomial()
+ sage: x.apply_univariate_polynomial(p)
+ 0
+
+ """
+ V = self.span_of_powers()
+ assoc_subalg = self.subalgebra_generated_by()
+ # Mis-design warning: the basis used for span_of_powers()
+ # and subalgebra_generated_by() must be the same, and in
+ # the same order!
+ elt = assoc_subalg(V.coordinates(self.vector()))
+ return elt.operator().minimal_polynomial()
+
+
+
+ def natural_representation(self):
+ """
+ Return a more-natural representation of this element.
+
+ Every finite-dimensional Euclidean Jordan Algebra is a
+ direct sum of five simple algebras, four of which comprise
+ Hermitian matrices. This method returns the original
+ "natural" representation of this element as a Hermitian
+ matrix, if it has one. If not, you get the usual representation.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
+ ....: QuaternionHermitianEJA)
+
+ EXAMPLES::
+
+ sage: J = ComplexHermitianEJA(3)
+ sage: J.one()
+ e0 + e5 + e8
+ sage: J.one().natural_representation()
+ [1 0 0 0 0 0]
+ [0 1 0 0 0 0]
+ [0 0 1 0 0 0]
+ [0 0 0 1 0 0]
+ [0 0 0 0 1 0]
+ [0 0 0 0 0 1]
+
+ ::
+
+ sage: J = QuaternionHermitianEJA(3)
+ sage: J.one()
+ e0 + e9 + e14
+ sage: J.one().natural_representation()
+ [1 0 0 0 0 0 0 0 0 0 0 0]
+ [0 1 0 0 0 0 0 0 0 0 0 0]
+ [0 0 1 0 0 0 0 0 0 0 0 0]
+ [0 0 0 1 0 0 0 0 0 0 0 0]
+ [0 0 0 0 1 0 0 0 0 0 0 0]
+ [0 0 0 0 0 1 0 0 0 0 0 0]
+ [0 0 0 0 0 0 1 0 0 0 0 0]
+ [0 0 0 0 0 0 0 1 0 0 0 0]
+ [0 0 0 0 0 0 0 0 1 0 0 0]
+ [0 0 0 0 0 0 0 0 0 1 0 0]
+ [0 0 0 0 0 0 0 0 0 0 1 0]
+ [0 0 0 0 0 0 0 0 0 0 0 1]
+
+ """
+ B = self.parent().natural_basis()
+ W = B[0].matrix_space()
+ return W.linear_combination(zip(self.vector(), B))
+
+
+ def operator(self):
+ """
+ Return the left-multiplication-by-this-element
+ operator on the ambient algebra.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import random_eja
+
+ TESTS::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: x = J.random_element()
+ sage: y = J.random_element()
+ sage: x.operator()(y) == x*y
+ True
+ sage: y.operator()(x) == x*y
+ True
+
+ """
+ P = self.parent()
+ fda_elt = FiniteDimensionalAlgebraElement(P, self)
+ return FiniteDimensionalEuclideanJordanAlgebraOperator(
+ P,
+ P,
+ fda_elt.matrix().transpose() )
+
+
+ def quadratic_representation(self, other=None):
+ """
+ Return the quadratic representation of this element.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+ ....: random_eja)
+
+ EXAMPLES:
+
+ The explicit form in the spin factor algebra is given by
+ Alizadeh's Example 11.12::
+
+ sage: set_random_seed()
+ sage: n = ZZ.random_element(1,10)
+ sage: J = JordanSpinEJA(n)
+ sage: x = J.random_element()
+ sage: x_vec = x.vector()
+ sage: x0 = x_vec[0]
+ sage: x_bar = x_vec[1:]
+ sage: A = matrix(QQ, 1, [x_vec.inner_product(x_vec)])
+ sage: B = 2*x0*x_bar.row()
+ sage: C = 2*x0*x_bar.column()
+ sage: D = matrix.identity(QQ, n-1)
+ sage: D = (x0^2 - x_bar.inner_product(x_bar))*D
+ sage: D = D + 2*x_bar.tensor_product(x_bar)
+ sage: Q = matrix.block(2,2,[A,B,C,D])
+ sage: Q == x.quadratic_representation().matrix()
+ True
+
+ Test all of the properties from Theorem 11.2 in Alizadeh::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: x = J.random_element()
+ sage: y = J.random_element()
+ sage: Lx = x.operator()
+ sage: Lxx = (x*x).operator()
+ sage: Qx = x.quadratic_representation()
+ sage: Qy = y.quadratic_representation()
+ sage: Qxy = x.quadratic_representation(y)
+ sage: Qex = J.one().quadratic_representation(x)
+ sage: n = ZZ.random_element(10)
+ sage: Qxn = (x^n).quadratic_representation()
+
+ Property 1:
+
+ sage: 2*Qxy == (x+y).quadratic_representation() - Qx - Qy
+ True
+
+ Property 2 (multiply on the right for :trac:`28272`):
+
+ sage: alpha = QQ.random_element()
+ sage: (alpha*x).quadratic_representation() == Qx*(alpha^2)
+ True
+
+ Property 3:
+
+ sage: not x.is_invertible() or ( Qx(x.inverse()) == x )
+ True
+
+ sage: not x.is_invertible() or (
+ ....: ~Qx
+ ....: ==
+ ....: x.inverse().quadratic_representation() )
+ True
+
+ sage: Qxy(J.one()) == x*y
+ True
+
+ Property 4:
+
+ sage: not x.is_invertible() or (
+ ....: x.quadratic_representation(x.inverse())*Qx
+ ....: == Qx*x.quadratic_representation(x.inverse()) )
+ True
+
+ sage: not x.is_invertible() or (
+ ....: x.quadratic_representation(x.inverse())*Qx
+ ....: ==
+ ....: 2*x.operator()*Qex - Qx )
+ True
+
+ sage: 2*x.operator()*Qex - Qx == Lxx
+ True
+
+ Property 5:
+
+ sage: Qy(x).quadratic_representation() == Qy*Qx*Qy
+ True
+
+ Property 6:
+
+ sage: Qxn == (Qx)^n
+ True
+
+ Property 7:
+
+ sage: not x.is_invertible() or (
+ ....: Qx*x.inverse().operator() == Lx )
+ True
+
+ Property 8:
+
+ sage: not x.operator_commutes_with(y) or (
+ ....: Qx(y)^n == Qxn(y^n) )
+ True
+
+ """
+ if other is None:
+ other=self
+ elif not other in self.parent():
+ raise TypeError("'other' must live in the same algebra")
+
+ L = self.operator()
+ M = other.operator()
+ return ( L*M + M*L - (self*other).operator() )
+
+
+ def span_of_powers(self):
+ """
+ Return the vector space spanned by successive powers of
+ this element.
+ """
+ # The dimension of the subalgebra can't be greater than
+ # the big algebra, so just put everything into a list
+ # and let span() get rid of the excess.
+ #
+ # We do the extra ambient_vector_space() in case we're messing
+ # with polynomials and the direct parent is a module.
+ V = self.parent().vector_space()
+ return V.span( (self**d).vector() for d in xrange(V.dimension()) )
+
+
+ def subalgebra_generated_by(self):
+ """
+ Return the associative subalgebra of the parent EJA generated
+ by this element.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import random_eja
+
+ TESTS::
+
+ sage: set_random_seed()
+ sage: x = random_eja().random_element()
+ sage: x.subalgebra_generated_by().is_associative()
+ True
+
+ Squaring in the subalgebra should work the same as in
+ the superalgebra::
+
+ sage: set_random_seed()
+ sage: x = random_eja().random_element()
+ sage: u = x.subalgebra_generated_by().random_element()
+ sage: u.operator()(u) == u^2
+ True
+
+ """
+ # First get the subspace spanned by the powers of myself...
+ V = self.span_of_powers()
+ F = self.base_ring()
+
+ # Now figure out the entries of the right-multiplication
+ # matrix for the successive basis elements b0, b1,... of
+ # that subspace.
+ mats = []
+ for b_right in V.basis():
+ eja_b_right = self.parent()(b_right)
+ b_right_rows = []
+ # The first row of the right-multiplication matrix by
+ # b1 is what we get if we apply that matrix to b1. The
+ # second row of the right multiplication matrix by b1
+ # is what we get when we apply that matrix to b2...
+ #
+ # IMPORTANT: this assumes that all vectors are COLUMN
+ # vectors, unlike our superclass (which uses row vectors).
+ for b_left in V.basis():
+ eja_b_left = self.parent()(b_left)
+ # Multiply in the original EJA, but then get the
+ # coordinates from the subalgebra in terms of its
+ # basis.
+ this_row = V.coordinates((eja_b_left*eja_b_right).vector())
+ b_right_rows.append(this_row)
+ b_right_matrix = matrix(F, b_right_rows)
+ mats.append(b_right_matrix)
+
+ # It's an algebra of polynomials in one element, and EJAs
+ # are power-associative.
+ #
+ # TODO: choose generator names intelligently.
+ #
+ # The rank is the highest possible degree of a minimal polynomial,
+ # and is bounded above by the dimension. We know in this case that
+ # there's an element whose minimal polynomial has the same degree
+ # as the space's dimension, so that must be its rank too.
+ return FiniteDimensionalEuclideanJordanAlgebra(
+ F,
+ mats,
+ V.dimension(),
+ assume_associative=True,
+ names='f')
+
+
+ def subalgebra_idempotent(self):
+ """
+ Find an idempotent in the associative subalgebra I generate
+ using Proposition 2.3.5 in Baes.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import random_eja
+
+ TESTS::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: x = J.random_element()
+ sage: while x.is_nilpotent():
+ ....: x = J.random_element()
+ sage: c = x.subalgebra_idempotent()
+ sage: c^2 == c
+ True
+
+ """
+ if self.is_nilpotent():
+ raise ValueError("this only works with non-nilpotent elements!")
+
+ V = self.span_of_powers()
+ J = self.subalgebra_generated_by()
+ # Mis-design warning: the basis used for span_of_powers()
+ # and subalgebra_generated_by() must be the same, and in
+ # the same order!
+ u = J(V.coordinates(self.vector()))
+
+ # The image of the matrix of left-u^m-multiplication
+ # will be minimal for some natural number s...
+ s = 0
+ minimal_dim = V.dimension()
+ for i in xrange(1, V.dimension()):
+ this_dim = (u**i).operator().matrix().image().dimension()
+ if this_dim < minimal_dim:
+ minimal_dim = this_dim
+ s = i
+
+ # Now minimal_matrix should correspond to the smallest
+ # non-zero subspace in Baes's (or really, Koecher's)
+ # proposition.
+ #
+ # However, we need to restrict the matrix to work on the
+ # subspace... or do we? Can't we just solve, knowing that
+ # A(c) = u^(s+1) should have a solution in the big space,
+ # too?
+ #
+ # Beware, solve_right() means that we're using COLUMN vectors.
+ # Our FiniteDimensionalAlgebraElement superclass uses rows.
+ u_next = u**(s+1)
+ A = u_next.operator().matrix()
+ c_coordinates = A.solve_right(u_next.vector())
+
+ # Now c_coordinates is the idempotent we want, but it's in
+ # the coordinate system of the subalgebra.
+ #
+ # We need the basis for J, but as elements of the parent algebra.
+ #
+ basis = [self.parent(v) for v in V.basis()]
+ return self.parent().linear_combination(zip(c_coordinates, basis))
+
+
+ def trace(self):
+ """
+ Return my trace, the sum of my eigenvalues.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+ ....: RealCartesianProductEJA,
+ ....: random_eja)
+
+ EXAMPLES::
+
+ sage: J = JordanSpinEJA(3)
+ sage: x = sum(J.gens())
+ sage: x.trace()
+ 2
+
+ ::
+
+ sage: J = RealCartesianProductEJA(5)
+ sage: J.one().trace()
+ 5
+
+ TESTS:
+
+ The trace of an element is a real number::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: J.random_element().trace() in J.base_ring()
+ True
+
+ """
+ P = self.parent()
+ r = P.rank()
+ p = P._charpoly_coeff(r-1)
+ # The _charpoly_coeff function already adds the factor of
+ # -1 to ensure that _charpoly_coeff(r-1) is really what
+ # appears in front of t^{r-1} in the charpoly. However,
+ # we want the negative of THAT for the trace.
+ return -p(*self.vector())
+
+
+ def trace_inner_product(self, other):
+ """
+ Return the trace inner product of myself and ``other``.
+
+ SETUP::
+
+ sage: from mjo.eja.eja_algebra import random_eja
+
+ TESTS:
+
+ The trace inner product is commutative::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: x = J.random_element(); y = J.random_element()
+ sage: x.trace_inner_product(y) == y.trace_inner_product(x)
+ True
+
+ The trace inner product is bilinear::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: x = J.random_element()
+ sage: y = J.random_element()
+ sage: z = J.random_element()
+ sage: a = QQ.random_element();
+ sage: actual = (a*(x+z)).trace_inner_product(y)
+ sage: expected = ( a*x.trace_inner_product(y) +
+ ....: a*z.trace_inner_product(y) )
+ sage: actual == expected
+ True
+ sage: actual = x.trace_inner_product(a*(y+z))
+ sage: expected = ( a*x.trace_inner_product(y) +
+ ....: a*x.trace_inner_product(z) )
+ sage: actual == expected
+ True
+
+ The trace inner product satisfies the compatibility
+ condition in the definition of a Euclidean Jordan algebra::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: x = J.random_element()
+ sage: y = J.random_element()
+ sage: z = J.random_element()
+ sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
+ True
+
+ """
+ if not other in self.parent():
+ raise TypeError("'other' must live in the same algebra")
+
+ return (self*other).trace()