sage: actual == 3
True
- The cone of positive operators is solid when the original cone is proper::
-
- sage: set_random_seed()
- sage: K = random_cone(max_ambient_dim=5,
- ....: strictly_convex=True,
- ....: solid=True)
- sage: pi_of_K = positive_operator_gens(K)
- sage: L = ToricLattice(K.lattice_dim()**2)
- sage: pi_cone = Cone([p.list() for p in pi_of_K], lattice=L)
- sage: pi_cone.is_solid()
- True
-
- The lineality of the cone of positive operators is given by the
- corollary in my paper::
+ The lineality of the cone of positive operators follows from the
+ description of its generators::
sage: set_random_seed()
sage: K = random_cone(max_ambient_dim=5)
sage: actual == expected
True
- The cone ``K`` is proper if and only if the cone of positive
- operators on ``K`` is proper::
+ The trivial cone, full space, and half-plane all give rise to the
+ expected linealities::
+
+ sage: n = ZZ.random_element().abs()
+ sage: K = Cone([[0] * n], ToricLattice(n))
+ sage: K.is_trivial()
+ True
+ sage: L = ToricLattice(n^2)
+ sage: pi_of_K = positive_operator_gens(K)
+ sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).lineality()
+ sage: actual == n^2
+ True
+ sage: K = K.dual()
+ sage: K.is_full_space()
+ True
+ sage: pi_of_K = positive_operator_gens(K)
+ sage: actual = Cone([p.list() for p in pi_of_K], lattice=L).lineality()
+ sage: actual == n^2
+ True
+ sage: K = Cone([(1,0),(0,1),(0,-1)])
+ sage: pi_of_K = positive_operator_gens(K)
+ sage: actual = Cone([p.list() for p in pi_of_K]).lineality()
+ sage: actual == 2
+ True
+
+ A cone is proper if and only if its cone of positive operators
+ is proper::
sage: set_random_seed()
sage: K = random_cone(max_ambient_dim=5)