+++ /dev/null
-Trace inner product tests:
-
- TESTS:
-
- The trace inner product is commutative::
-
- sage: set_random_seed()
- sage: J = random_eja()
- sage: x = J.random_element(); y = J.random_element()
- sage: x.trace_inner_product(y) == y.trace_inner_product(x)
- True
-
- The trace inner product is bilinear::
-
- sage: set_random_seed()
- sage: J = random_eja()
- sage: x = J.random_element()
- sage: y = J.random_element()
- sage: z = J.random_element()
- sage: a = QQ.random_element();
- sage: actual = (a*(x+z)).trace_inner_product(y)
- sage: expected = a*x.trace_inner_product(y) + a*z.trace_inner_product(y)
- sage: actual == expected
- True
- sage: actual = x.trace_inner_product(a*(y+z))
- sage: expected = a*x.trace_inner_product(y) + a*x.trace_inner_product(z)
- sage: actual == expected
- True
-
- The trace inner product is associative::
-
- sage: pass
-
- The trace inner product satisfies the compatibility
- condition in the definition of a Euclidean Jordan algebra:
-
- sage: set_random_seed()
- sage: J = random_eja()
- sage: x = J.random_element()
- sage: y = J.random_element()
- sage: z = J.random_element()
- sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
- True
-
\ No newline at end of file
def trace_inner_product(self, other):
"""
Return the trace inner product of myself and ``other``.
+
+ TESTS:
+
+ The trace inner product is commutative::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: x = J.random_element(); y = J.random_element()
+ sage: x.trace_inner_product(y) == y.trace_inner_product(x)
+ True
+
+ The trace inner product is bilinear::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: x = J.random_element()
+ sage: y = J.random_element()
+ sage: z = J.random_element()
+ sage: a = QQ.random_element();
+ sage: actual = (a*(x+z)).trace_inner_product(y)
+ sage: expected = ( a*x.trace_inner_product(y) +
+ ....: a*z.trace_inner_product(y) )
+ sage: actual == expected
+ True
+ sage: actual = x.trace_inner_product(a*(y+z))
+ sage: expected = ( a*x.trace_inner_product(y) +
+ ....: a*x.trace_inner_product(z) )
+ sage: actual == expected
+ True
+
+ The trace inner product satisfies the compatibility
+ condition in the definition of a Euclidean Jordan algebra::
+
+ sage: set_random_seed()
+ sage: J = random_eja()
+ sage: x = J.random_element()
+ sage: y = J.random_element()
+ sage: z = J.random_element()
+ sage: (x*y).trace_inner_product(z) == y.trace_inner_product(x*z)
+ True
+
"""
if not other in self.parent():
raise TypeError("'other' must live in the same algebra")