expr = expr.simplify_factorial()
expr = expr.simplify_log()
return expr
+
+
+def matrix_subs_expr(m, *equations):
+ """
+ Symbolic matrices have a `subs()` method, but no `subs_expr()`.
+ This makes it diffucult to substitute in a list of solutions obtained
+ with `solve()`.
+
+ INPUT:
+
+ - ``m`` -- A symbolic matrix.
+
+ - ``equations`` - One or more symbolic equations, presumably for
+ the entries of `m`.
+
+ OUTPUT:
+
+ The result of substituting each equation into `m`, one after another.
+
+ EXAMPLES::
+
+ sage: w,x,y,z = SR.var('w,x,y,z')
+ sage: A = matrix(SR, [[w,x],[y,z]])
+ sage: matrix_subs_expr(A, w == 1, x == 2, y == 3, z == 4)
+ [1 2]
+ [3 4]
+
+ """
+ from sage.symbolic.expression import is_SymbolicEquation
+
+ if not m.base_ring() == SR:
+ raise TypeError, 'the matrix "m" must be symbolic'
+
+ if isinstance(equations[0], dict):
+ eq_dict = equations[0]
+ equations = [ x == eq_dict[x] for x in eq_dict.keys() ]
+
+ if not all([is_SymbolicEquation(eq) for eq in equations]):
+ raise TypeError, "each expression must be an equation"
+
+ d = dict([(eq.lhs(), eq.rhs()) for eq in equations])
+ return m.subs(d)