]> gitweb.michael.orlitzky.com - sage.d.git/commitdiff
eja: refactor the matrix EJA hierarchy (mainly constructors) a bit.
authorMichael Orlitzky <michael@orlitzky.com>
Mon, 26 Aug 2019 03:40:41 +0000 (23:40 -0400)
committerMichael Orlitzky <michael@orlitzky.com>
Mon, 26 Aug 2019 03:40:41 +0000 (23:40 -0400)
mjo/eja/eja_algebra.py

index cea1476f1eef34df7db63a231c9b1ff54efe5224..02cf32c7d27ff93728ad548a964ff6bee5f277d4 100644 (file)
@@ -885,17 +885,20 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
         # field can have dimension 4 (quaternions) too.
         return 2
 
-    @classmethod
-    def _denormalized_basis(cls, n, field):
-        raise NotImplementedError
-
-    def __init__(self, n, field=QQ, normalize_basis=True, **kwargs):
-        S = self._denormalized_basis(n, field)
-
+    def __init__(self, field, basis, rank, normalize_basis=True, **kwargs):
+        """
+        Compared to the superclass constructor, we take a basis instead of
+        a multiplication table because the latter can be computed in terms
+        of the former when the product is known (like it is here).
+        """
         # Used in this class's fast _charpoly_coeff() override.
         self._basis_normalizers = None
 
-        if n > 1 and normalize_basis:
+        # We're going to loop through this a few times, so now's a good
+        # time to ensure that it isn't a generator expression.
+        basis = tuple(basis)
+
+        if rank > 1 and normalize_basis:
             # We'll need sqrt(2) to normalize the basis, and this
             # winds up in the multiplication table, so the whole
             # algebra needs to be over the field extension.
@@ -904,18 +907,18 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
             p = z**2 - 2
             if p.is_irreducible():
                 field = NumberField(p, 'sqrt2', embedding=RLF(2).sqrt())
-                S = [ s.change_ring(field) for s in S ]
+                basis = tuple( s.change_ring(field) for s in basis )
             self._basis_normalizers = tuple(
-                ~(self.natural_inner_product(s,s).sqrt()) for s in S )
-            S = tuple( s*c for (s,c) in zip(S,self._basis_normalizers) )
+                ~(self.natural_inner_product(s,s).sqrt()) for s in basis )
+            basis = tuple(s*c for (s,c) in izip(basis,self._basis_normalizers))
 
-        Qs = self.multiplication_table_from_matrix_basis(S)
+        Qs = self.multiplication_table_from_matrix_basis(basis)
 
         fdeja = super(MatrixEuclideanJordanAlgebra, self)
         return fdeja.__init__(field,
                               Qs,
-                              rank=n,
-                              natural_basis=S,
+                              rank=rank,
+                              natural_basis=basis,
                               **kwargs)
 
 
@@ -930,11 +933,13 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
             # with had entries in a nice field.
             return super(MatrixEuclideanJordanAlgebra, self)._charpoly_coeff(i)
         else:
-            # If we didn't unembed first, this number would be wrong
-            # by a power-of-two factor for complex/quaternion matrices.
-            n = self.real_unembed(self.natural_basis_space().zero()).nrows()
-            field = self.base_ring().base_ring() # yeeeeaaaahhh
-            J = self.__class__(n, field, False)
+            basis = ( (b/n) for (b,n) in izip(self.natural_basis(),
+                                              self._basis_normalizers) )
+            field = self.base_ring().base_ring() # yeeeaahhhhhhh
+            J = MatrixEuclideanJordanAlgebra(field,
+                                             basis,
+                                             self.rank(),
+                                             normalize_basis=False)
             (_,x,_,_) = J._charpoly_matrix_system()
             p = J._charpoly_coeff(i)
             # p might be missing some vars, have to substitute "optionally"
@@ -1136,7 +1141,7 @@ class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra):
                 else:
                     Sij = Eij + Eij.transpose()
                 S.append(Sij)
-        return tuple(S)
+        return S
 
 
     @staticmethod
@@ -1144,6 +1149,10 @@ class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra):
         return 4 # Dimension 10
 
 
+    def __init__(self, n, field=QQ, **kwargs):
+        basis = self._denormalized_basis(n, field)
+        super(RealSymmetricEJA, self).__init__(field, basis, n, **kwargs)
+
 
 class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
     @staticmethod
@@ -1356,6 +1365,7 @@ class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra):
         True
 
     """
+
     @classmethod
     def _denormalized_basis(cls, n, field):
         """
@@ -1407,9 +1417,13 @@ class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra):
 
         # Since we embedded these, we can drop back to the "field" that we
         # started with instead of the complex extension "F".
-        return tuple( s.change_ring(field) for s in S )
+        return ( s.change_ring(field) for s in S )
 
 
+    def __init__(self, n, field=QQ, **kwargs):
+        basis = self._denormalized_basis(n,field)
+        super(ComplexHermitianEJA,self).__init__(field, basis, n, **kwargs)
+
 
 class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
     @staticmethod
@@ -1685,8 +1699,12 @@ class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra):
                     S.append(Sij_J)
                     Sij_K = cls.real_embed(K*Eij - K*Eij.transpose())
                     S.append(Sij_K)
-        return tuple(S)
+        return S
+
 
+    def __init__(self, n, field=QQ, **kwargs):
+        basis = self._denormalized_basis(n,field)
+        super(QuaternionHermitianEJA,self).__init__(field, basis, n, **kwargs)
 
 
 class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra):