#!/usr/bin/octave --silent
-unit_init(1, {});
-
-unit_test_equals("sin[0] == 0", ...
- 0, ...
- divided_difference(@sin, 0));
-
-unit_test_equals("sin[0, pi] == 0", ...
- 0, ...
- divided_difference(@sin, [0,pi]));
-
-unit_test_equals("sin[0, pi, 2*pi] == 0", ...
- 0, ...
- divided_difference(@sin, [0,pi,2*pi]));
-
-unit_test_equals("zero order divided_difference_coefficients", ...
- [1], ...
- divided_difference_coefficients([0]));
-
-unit_test_equals("first order divided_difference_coefficients", ...
- [-1, 1] / pi, ...
- divided_difference_coefficients([0, pi]));
-
-unit_test_equals("second order divided_difference_coefficients", ...
- [1, -2, 1] / (2*pi^2), ...
- divided_difference_coefficients([0, pi, 2*pi]));
-
-
-unit_test_equals("1 is odd", ...
- true, ...
- odd(1));
-
-unit_test_equals("1 is not even", ...
- false, ...
- even(1));
-
-unit_test_equals("2 is not odd", ...
- false, ...
- odd(2));
-
-unit_test_equals("2 is even", ...
- true, ...
- even(2));
-
-expected_A = [-1, 0, 0, 0, 0; ...
- -16, 32, -16, 0, 0; ...
- 0, -16, 32, -16, 0; ...
- 0, 0, -16, 32, -16; ...
- 0, 0, 0, 0, -1];
-unit_test_equals("Homework #1 problem #1 Poisson matrix is correct", ...
- true, ...
- expected_A == poisson_matrix(4, 0, 1));
-
-
-g = @(x) 1 + atan(x);
-expected_fp = 2.1323;
-tol = 1 / 10^10;
-x0 = 2.4;
-unit_test_equals("Homework #2 problem #5 fixed point is correct", ...
- expected_fp, ...
- fixed_point_method(g, tol, x0));
-
-
-h = 0.5;
-g1 = @(u) 1 + h*exp(-u(1)^2)/(1+u(2)^2);
-g2 = @(u) 0.5 + h*atan(u(1)^2 + u(2)^2);
-my_g = @(u) [g1(u), g2(u)];
-tol = 1 / 10^9;
-u0 = [1,1];
-expected_fp = [1.0729, 1.0821];
-unit_test_equals("Homework #3 problem #3i fixed point is correct", ...
- expected_fp, ...
- fixed_point_method(my_g, tol, u0));
-
-
-f = @(x) x^6 - x - 1;
-f_prime = @(x) 6*x^5 - 1;
-tol = 1/1000000;
-x0 = 2;
-expected_root = 1.1347;
-unit_test_equals("Newton's method agrees with Haskell", ...
- expected_root, ...
- newtons_method(f, f_prime, tol, x0));
-
-
-
-f1 = @(u) u(1)^2 + u(1)*u(2)^3 - 9;
-f2 = @(u) 3*u(1)^2*u(2) - u(2)^3 - 4;
-f = @(u) [f1(u); f2(u)];
-## The partials for the Jacobian.
-f1x = @(u) 2*u(1) + u(2)^3;
-f1y = @(u) 3*u(1)*u(2)^2;
-f2x = @(u) 6*u(1)*u(2);
-f2y = @(u) 3*u(1)^2 - 3*u(2)^2;
-## f_prime == Jacobian.
-f_prime = @(u) [ f1x(u), f1y(u); f2x(u), f2y(u) ];
-tol = 1 / 10^12;
-u0 = [1.2; 2.5];
-expected_root = [1.33635; 1.75424];
-[actual_root, iterations] = newtons_method(f, f_prime, tol, u0);
-unit_test_equals("Homework #3 problem #4 root is correct", ...
- expected_root, ...
- actual_root);
-
+addpath('./unit_test');
+unit_init(1, {});
-f = @(x,y) y;
-x0 = 0;
-y0 = 1;
-h = 1;
-actual_y = forward_euler1(x0, y0, f, h);
-expected_y = 2;
+test_files = glob('tests/*.m');
-unit_test_equals("Forward Euler works for one step", ...
- expected_y, ...
- actual_y);
+## Source every file that matches the glob above.
+cellfun(@source, test_files);
--- /dev/null
+f = @(x) x^6 - x - 1;
+f_prime = @(x) 6*x^5 - 1;
+tol = 1/1000000;
+x0 = 2;
+expected_root = 1.1347;
+unit_test_equals("Newton's method agrees with Haskell", ...
+ expected_root, ...
+ newtons_method(f, f_prime, tol, x0));
+
+
+f1 = @(u) u(1)^2 + u(1)*u(2)^3 - 9;
+f2 = @(u) 3*u(1)^2*u(2) - u(2)^3 - 4;
+f = @(u) [f1(u); f2(u)];
+## The partials for the Jacobian.
+f1x = @(u) 2*u(1) + u(2)^3;
+f1y = @(u) 3*u(1)*u(2)^2;
+f2x = @(u) 6*u(1)*u(2);
+f2y = @(u) 3*u(1)^2 - 3*u(2)^2;
+## f_prime == Jacobian.
+f_prime = @(u) [ f1x(u), f1y(u); f2x(u), f2y(u) ];
+tol = 1 / 10^12;
+u0 = [1.2; 2.5];
+expected_root = [1.33635; 1.75424];
+[actual_root, iterations] = newtons_method(f, f_prime, tol, u0);
+unit_test_equals("Homework #3 problem #4 root is correct", ...
+ expected_root, ...
+ actual_root);