.. [Orlitzky-Pi-Z]
M. Orlitzky.
- Positive operators and Z-transformations on closed convex cones.
+ Positive and Z-operators on closed convex cones.
.. [Tam]
B.-S. Tam.
return [ M(v.list()) for v in pi_cone ]
-def Z_transformation_gens(K):
+def Z_operator_gens(K):
r"""
- Compute generators of the cone of Z-transformations on this cone.
+ Compute generators of the cone of Z-operators on this cone.
OUTPUT:
REFERENCES:
M. Orlitzky.
- Positive operators and Z-transformations on closed convex cones.
+ Positive and Z-operators on closed convex cones.
EXAMPLES:
- Z-transformations on the nonnegative orthant are just Z-matrices.
+ Z-operators on the nonnegative orthant are just Z-matrices.
That is, matrices whose off-diagonal elements are nonnegative::
sage: K = Cone([(1,0),(0,1)])
- sage: Z_transformation_gens(K)
+ sage: Z_operator_gens(K)
[
[ 0 -1] [ 0 0] [-1 0] [1 0] [ 0 0] [0 0]
[ 0 0], [-1 0], [ 0 0], [0 0], [ 0 -1], [0 1]
]
sage: K = Cone([(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)])
- sage: all([ z[i][j] <= 0 for z in Z_transformation_gens(K)
+ sage: all([ z[i][j] <= 0 for z in Z_operator_gens(K)
....: for i in range(z.nrows())
....: for j in range(z.ncols())
....: if i != j ])
True
- The trivial cone in a trivial space has no Z-transformations::
+ The trivial cone in a trivial space has no Z-operators::
sage: K = Cone([], ToricLattice(0))
- sage: Z_transformation_gens(K)
+ sage: Z_operator_gens(K)
[]
- Every operator is a Z-transformation on the ambient vector space::
+ Every operator is a Z-operator on the ambient vector space::
sage: K = Cone([(1,),(-1,)])
sage: K.is_full_space()
True
- sage: Z_transformation_gens(K)
+ sage: Z_operator_gens(K)
[[-1], [1]]
sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
sage: K.is_full_space()
True
- sage: Z_transformation_gens(K)
+ sage: Z_operator_gens(K)
[
[-1 0] [1 0] [ 0 -1] [0 1] [ 0 0] [0 0] [ 0 0] [0 0]
[ 0 0], [0 0], [ 0 0], [0 0], [-1 0], [1 0], [ 0 -1], [0 1]
]
- A non-obvious application is to find the Z-transformations on the
+ A non-obvious application is to find the Z-operators on the
right half-plane::
sage: K = Cone([(1,0),(0,1),(0,-1)])
- sage: Z_transformation_gens(K)
+ sage: Z_operator_gens(K)
[
[-1 0] [1 0] [ 0 0] [0 0] [ 0 0] [0 0]
[ 0 0], [0 0], [-1 0], [1 0], [ 0 -1], [0 1]
]
- Z-transformations on a subspace are Lyapunov-like and vice-versa::
+ Z-operators on a subspace are Lyapunov-like and vice-versa::
sage: K = Cone([(1,0),(-1,0),(0,1),(0,-1)])
sage: K.is_full_space()
True
sage: lls = span([ vector(l.list()) for l in K.lyapunov_like_basis() ])
- sage: zs = span([ vector(z.list()) for z in Z_transformation_gens(K) ])
+ sage: zs = span([ vector(z.list()) for z in Z_operator_gens(K) ])
sage: zs == lls
True
TESTS:
- The Z-property is possessed by every Z-transformation::
+ The Z-property is possessed by every Z-operator::
sage: set_random_seed()
sage: K = random_cone(max_ambient_dim=4)
- sage: Z_of_K = Z_transformation_gens(K)
+ sage: Z_of_K = Z_operator_gens(K)
sage: dcs = K.discrete_complementarity_set()
sage: all([(z*x).inner_product(s) <= 0 for z in Z_of_K
....: for (x,s) in dcs])
True
- The lineality space of the cone of Z-transformations is the space of
- Lyapunov-like transformations::
+ The lineality space of the cone of Z-operators is the space of
+ Lyapunov-like operators::
sage: set_random_seed()
sage: K = random_cone(max_ambient_dim=4)
sage: L = ToricLattice(K.lattice_dim()**2)
- sage: Z_cone = Cone([ z.list() for z in Z_transformation_gens(K) ],
+ sage: Z_cone = Cone([ z.list() for z in Z_operator_gens(K) ],
....: lattice=L,
....: check=False)
sage: ll_basis = [ vector(l.list()) for l in K.lyapunov_like_basis() ]
sage: Z_cone.linear_subspace() == lls
True
- The lineality of the Z-transformations on a cone is the Lyapunov
+ The lineality of the Z-operators on a cone is the Lyapunov
rank of that cone::
sage: set_random_seed()
sage: K = random_cone(max_ambient_dim=4)
- sage: Z_of_K = Z_transformation_gens(K)
+ sage: Z_of_K = Z_operator_gens(K)
sage: L = ToricLattice(K.lattice_dim()**2)
sage: Z_cone = Cone([ z.list() for z in Z_of_K ],
....: lattice=L,
sage: Z_cone.lineality() == K.lyapunov_rank()
True
- The lineality spaces of the duals of the positive operator and
- Z-transformation cones are equal. From this it follows that the
- dimensions of the Z-transformation cone and positive operator cone
- are equal::
+ The lineality spaces of the duals of the positive and Z-operator
+ cones are equal. From this it follows that the dimensions of the
+ Z-operator cone and positive operator cone are equal::
sage: set_random_seed()
sage: K = random_cone(max_ambient_dim=4)
sage: pi_of_K = positive_operator_gens(K)
- sage: Z_of_K = Z_transformation_gens(K)
+ sage: Z_of_K = Z_operator_gens(K)
sage: L = ToricLattice(K.lattice_dim()**2)
sage: pi_cone = Cone([p.list() for p in pi_of_K],
....: lattice=L,
sage: K.is_trivial()
True
sage: L = ToricLattice(n^2)
- sage: Z_of_K = Z_transformation_gens(K)
+ sage: Z_of_K = Z_operator_gens(K)
sage: Z_cone = Cone([z.list() for z in Z_of_K],
....: lattice=L,
....: check=False)
sage: K = K.dual()
sage: K.is_full_space()
True
- sage: Z_of_K = Z_transformation_gens(K)
+ sage: Z_of_K = Z_operator_gens(K)
sage: Z_cone = Cone([z.list() for z in Z_of_K],
....: lattice=L,
....: check=False)
sage: actual == n^2
True
sage: K = Cone([(1,0),(0,1),(0,-1)])
- sage: Z_of_K = Z_transformation_gens(K)
+ sage: Z_of_K = Z_operator_gens(K)
sage: Z_cone = Cone([z.list() for z in Z_of_K], check=False)
sage: Z_cone.dim() == 3
True
- The Z-transformations of a permuted cone can be obtained by
- conjugation::
+ The Z-operators of a permuted cone can be obtained by conjugation::
sage: set_random_seed()
sage: K = random_cone(max_ambient_dim=4)
sage: L = ToricLattice(K.lattice_dim()**2)
sage: p = SymmetricGroup(K.lattice_dim()).random_element().matrix()
sage: pK = Cone([ p*k for k in K ], K.lattice(), check=False)
- sage: Z_of_pK = Z_transformation_gens(pK)
+ sage: Z_of_pK = Z_operator_gens(pK)
sage: actual = Cone([t.list() for t in Z_of_pK],
....: lattice=L,
....: check=False)
- sage: Z_of_K = Z_transformation_gens(K)
+ sage: Z_of_K = Z_operator_gens(K)
sage: expected = Cone([(p*t*p.inverse()).list() for t in Z_of_K],
....: lattice=L,
....: check=False)
sage: actual.is_equivalent(expected)
True
- A transformation is a Z-transformation on a cone if and only if its
- adjoint is a Z-transformation on the dual of that cone::
+ An operator is a Z-operator on a cone if and only if its
+ adjoint is a Z-operator on the dual of that cone::
sage: set_random_seed()
sage: K = random_cone(max_ambient_dim=4)
sage: n = K.lattice_dim()
sage: L = ToricLattice(n**2)
sage: W = VectorSpace(F, n**2)
- sage: Z_of_K = Z_transformation_gens(K)
- sage: Z_of_K_star = Z_transformation_gens(K.dual())
+ sage: Z_of_K = Z_operator_gens(K)
+ sage: Z_of_K_star = Z_operator_gens(K.dual())
sage: Z_cone = Cone([p.list() for p in Z_of_K],
....: lattice=L,
....: check=False)
n = K.lattice_dim()
# These tensor products contain generators for the dual cone of
- # the cross-positive transformations.
+ # the cross-positive operators.
tensor_products = [ s.tensor_product(x)
for (x,s) in K.discrete_complementarity_set() ]
Sigma_cone = Sigma_dual.dual()
# And finally convert its rays back to matrix representations.
- # But first, make them negative, so we get Z-transformations and
+ # But first, make them negative, so we get Z-operators and
# not cross-positive ones.
M = MatrixSpace(F, n)
return [ -M(v.list()) for v in Sigma_cone ]
def Z_cone(K):
- gens = Z_transformation_gens(K)
+ gens = Z_operator_gens(K)
L = ToricLattice(K.lattice_dim()**2)
return Cone([ g.list() for g in gens ], lattice=L, check=False)