SETUP::
- sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+ sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
+ ....: JordanSpinEJA,
....: random_eja)
EXAMPLES:
....: x.operator().inverse()(J.one()) == x.inverse() )
True
+ Proposition II.2.4 in Faraut and Korányi gives a formula for
+ the inverse based on the characteristic polynomial and the
+ Cayley-Hamilton theorem for Euclidean Jordan algebras::
+
+ sage: set_random_seed()
+ sage: J = ComplexHermitianEJA(3)
+ sage: x = J.random_element()
+ sage: while not x.is_invertible():
+ ....: x = J.random_element()
+ sage: r = J.rank()
+ sage: a = x.characteristic_polynomial().coefficients(sparse=False)
+ sage: expected = (-1)^(r+1)/x.det()
+ sage: expected *= sum( a[i+1]*x^i for i in range(r) )
+ sage: x.inverse() == expected
+ True
+
"""
if not self.is_invertible():
raise ValueError("element is not invertible")