l[i][j] += v*e
return l
- def __repr__(self):
+ def _repr_(self):
r"""
Display this matrix as a table.
ncols = nrows
def product_on_basis(self, mon1, mon2):
+ r"""
+
+ SETUP::
+
+ sage: from mjo.octonions import Octonions
+ sage: from mjo.matrix_algebra import MatrixAlgebra
+
+ TESTS::
+
+ sage: O = Octonions(QQ)
+ sage: e = O.gens()
+ sage: e[2]*e[1]
+ -e3
+ sage: A = MatrixAlgebra(O,QQ,2)
+ sage: A.product_on_basis( (0,0,e[2]), (0,0,e[1]) )
+ +-----+---+
+ | -e3 | 0 |
+ +-----+---+
+ | 0 | 0 |
+ +-----+---+
+
+ """
(i,j,e1) = mon1
(k,l,e2) = mon2
if j == k:
- return self.monomial((i,l,e1*e2))
+ # If e1*e2 has a negative sign in front of it,
+ # then (i,l,e1*e2) won't be a monomial!
+ p = e1*e2
+ if (i,l,p) in self.indices():
+ return self.monomial((i,l,p))
+ else:
+ return -self.monomial((i,l,-p))
else:
return self.zero()