]> gitweb.michael.orlitzky.com - dunshire.git/commitdiff
Move unit test code into its own file (unders test/ instead of src/).
authorMichael Orlitzky <michael@orlitzky.com>
Sat, 15 Oct 2016 23:49:48 +0000 (19:49 -0400)
committerMichael Orlitzky <michael@orlitzky.com>
Sat, 15 Oct 2016 23:49:48 +0000 (19:49 -0400)
src/dunshire/games.py
test/suite.py
test/symmetric_linear_game_test.py [new file with mode: 0644]

index 05ab58cd702c5570221184ed47f5bb16289627c0..92a3ffe7b6f684ea134ff88bdf08d745ae7a4944 100644 (file)
@@ -5,17 +5,10 @@ This module contains the main :class:`SymmetricLinearGame` class that
 knows how to solve a linear game.
 """
 
-# These few are used only for tests.
-from math import sqrt
-from random import randint, uniform
-from unittest import TestCase
-
-# These are mostly actually needed.
 from cvxopt import matrix, printing, solvers
-from .cones import CartesianProduct, IceCream, NonnegativeOrthant
+from .cones import CartesianProduct
 from .errors import GameUnsolvableException
-from .matrices import (append_col, append_row, eigenvalues_re, identity,
-                       inner_product, norm)
+from .matrices import append_col, append_row, identity
 from . import options
 
 printing.options['dformat'] = options.FLOAT_FORMAT
@@ -211,6 +204,7 @@ class SymmetricLinearGame:
     Examples
     --------
 
+        >>> from dunshire import *
         >>> K = NonnegativeOrthant(3)
         >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
         >>> e1 = [1,1,1]
@@ -231,6 +225,7 @@ class SymmetricLinearGame:
 
     Lists can (and probably should) be used for every argument::
 
+        >>> from dunshire import *
         >>> K = NonnegativeOrthant(2)
         >>> L = [[1,0],[0,1]]
         >>> e1 = [1,1]
@@ -252,6 +247,7 @@ class SymmetricLinearGame:
 
         >>> import cvxopt
         >>> import numpy
+        >>> from dunshire import *
         >>> K = NonnegativeOrthant(2)
         >>> L = [[1,0],[0,1]]
         >>> e1 = cvxopt.matrix([1,1])
@@ -272,6 +268,7 @@ class SymmetricLinearGame:
     otherwise indexed by columns::
 
         >>> import cvxopt
+        >>> from dunshire import *
         >>> K = NonnegativeOrthant(2)
         >>> L = [[1,2],[3,4]]
         >>> e1 = [1,1]
@@ -360,6 +357,7 @@ class SymmetricLinearGame:
         This example is computed in Gowda and Ravindran in the section
         "The value of a Z-transformation"::
 
+            >>> from dunshire import *
             >>> K = NonnegativeOrthant(3)
             >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
             >>> e1 = [1,1,1]
@@ -379,6 +377,7 @@ class SymmetricLinearGame:
         The value of the following game can be computed using the fact
         that the identity is invertible::
 
+            >>> from dunshire import *
             >>> K = NonnegativeOrthant(3)
             >>> L = [[1,0,0],[0,1,0],[0,0,1]]
             >>> e1 = [1,2,3]
@@ -469,6 +468,7 @@ class SymmetricLinearGame:
         Examples
         --------
 
+            >>> from dunshire import *
             >>> K = NonnegativeOrthant(3)
             >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
             >>> e1 = [1,1,1]
@@ -495,401 +495,3 @@ class SymmetricLinearGame:
                                    self._K,
                                    self._e2,
                                    self._e1)
-
-
-
-def _random_matrix(dims):
-    """
-    Generate a random square (``dims``-by-``dims``) matrix. This is used
-    only by the :class:`SymmetricLinearGameTest` class.
-    """
-    return matrix([[uniform(-10, 10) for i in range(dims)]
-                   for j in range(dims)])
-
-def _random_nonnegative_matrix(dims):
-    """
-    Generate a random square (``dims``-by-``dims``) matrix with
-    nonnegative entries. This is used only by the
-    :class:`SymmetricLinearGameTest` class.
-    """
-    L = _random_matrix(dims)
-    return matrix([abs(entry) for entry in L], (dims, dims))
-
-def _random_diagonal_matrix(dims):
-    """
-    Generate a random square (``dims``-by-``dims``) matrix with nonzero
-    entries only on the diagonal. This is used only by the
-    :class:`SymmetricLinearGameTest` class.
-    """
-    return matrix([[uniform(-10, 10)*int(i == j) for i in range(dims)]
-                   for j in range(dims)])
-
-
-def _random_skew_symmetric_matrix(dims):
-    """
-    Generate a random skew-symmetrix (``dims``-by-``dims``) matrix.
-
-    Examples
-    --------
-
-       >>> A = _random_skew_symmetric_matrix(randint(1, 10))
-       >>> norm(A + A.trans()) < options.ABS_TOL
-       True
-
-    """
-    strict_ut = [[uniform(-10, 10)*int(i < j) for i in range(dims)]
-                 for j in range(dims)]
-
-    strict_ut = matrix(strict_ut, (dims, dims))
-    return strict_ut - strict_ut.trans()
-
-
-def _random_lyapunov_like_icecream(dims):
-    """
-    Generate a random Lyapunov-like matrix over the ice-cream cone in
-    ``dims`` dimensions.
-    """
-    a = matrix([uniform(-10, 10)], (1, 1))
-    b = matrix([uniform(-10, 10) for idx in range(dims-1)], (dims-1, 1))
-    D = _random_skew_symmetric_matrix(dims-1) + a*identity(dims-1)
-    row1 = append_col(a, b.trans())
-    row2 = append_col(b, D)
-    return append_row(row1, row2)
-
-
-def _random_orthant_params():
-    """
-    Generate the ``L``, ``K``, ``e1``, and ``e2`` parameters for a
-    random game over the nonnegative orthant. This is only used by
-    the :class:`SymmetricLinearGameTest` class.
-    """
-    ambient_dim = randint(1, 10)
-    K = NonnegativeOrthant(ambient_dim)
-    e1 = [uniform(0.5, 10) for idx in range(K.dimension())]
-    e2 = [uniform(0.5, 10) for idx in range(K.dimension())]
-    L = _random_matrix(K.dimension())
-    return (L, K, matrix(e1), matrix(e2))
-
-
-def _random_icecream_params():
-    """
-    Generate the ``L``, ``K``, ``e1``, and ``e2`` parameters for a
-    random game over the ice cream cone. This is only used by
-    the :class:`SymmetricLinearGameTest` class.
-    """
-    # Use a minimum dimension of two to avoid divide-by-zero in
-    # the fudge factor we make up later.
-    ambient_dim = randint(2, 10)
-    K = IceCream(ambient_dim)
-    e1 = [1] # Set the "height" of e1 to one
-    e2 = [1] # And the same for e2
-
-    # If we choose the rest of the components of e1,e2 randomly
-    # between 0 and 1, then the largest the squared norm of the
-    # non-height part of e1,e2 could be is the 1*(dim(K) - 1). We
-    # need to make it less than one (the height of the cone) so
-    # that the whole thing is in the cone. The norm of the
-    # non-height part is sqrt(dim(K) - 1), and we can divide by
-    # twice that.
-    fudge_factor = 1.0 / (2.0*sqrt(K.dimension() - 1.0))
-    e1 += [fudge_factor*uniform(0, 1) for idx in range(K.dimension() - 1)]
-    e2 += [fudge_factor*uniform(0, 1) for idx in range(K.dimension() - 1)]
-    L = _random_matrix(K.dimension())
-
-    return (L, K, matrix(e1), matrix(e2))
-
-
-# Tell pylint to shut up about the large number of methods.
-class SymmetricLinearGameTest(TestCase): # pylint: disable=R0904
-    """
-    Tests for the SymmetricLinearGame and Solution classes.
-    """
-    def assert_within_tol(self, first, second):
-        """
-        Test that ``first`` and ``second`` are equal within our default
-        tolerance.
-        """
-        self.assertTrue(abs(first - second) < options.ABS_TOL)
-
-
-    def assert_norm_within_tol(self, first, second):
-        """
-        Test that ``first`` and ``second`` vectors are equal in the
-        sense that the norm of their difference is within our default
-        tolerance.
-        """
-        self.assert_within_tol(norm(first - second), 0)
-
-
-    def assert_solution_exists(self, L, K, e1, e2):
-        """
-        Given the parameters needed to construct a SymmetricLinearGame,
-        ensure that that game has a solution.
-        """
-        # The matrix() constructor assumes that ``L`` is a list of
-        # columns, so we transpose it to agree with what
-        # SymmetricLinearGame() thinks.
-        G = SymmetricLinearGame(L.trans(), K, e1, e2)
-        soln = G.solution()
-
-        expected = inner_product(L*soln.player1_optimal(),
-                                 soln.player2_optimal())
-        self.assert_within_tol(soln.game_value(), expected)
-
-
-    def test_solution_exists_orthant(self):
-        """
-        Every linear game has a solution, so we should be able to solve
-        every symmetric linear game over the NonnegativeOrthant. Pick
-        some parameters randomly and give it a shot. The resulting
-        optimal solutions should give us the optimal game value when we
-        apply the payoff operator to them.
-        """
-        (L, K, e1, e2) = _random_orthant_params()
-        self.assert_solution_exists(L, K, e1, e2)
-
-
-    def test_solution_exists_icecream(self):
-        """
-        Like :meth:`test_solution_exists_nonnegative_orthant`, except
-        over the ice cream cone.
-        """
-        (L, K, e1, e2) = _random_icecream_params()
-        self.assert_solution_exists(L, K, e1, e2)
-
-
-    def test_negative_value_z_operator(self):
-        """
-        Test the example given in Gowda/Ravindran of a Z-matrix with
-        negative game value on the nonnegative orthant.
-        """
-        K = NonnegativeOrthant(2)
-        e1 = [1, 1]
-        e2 = e1
-        L = [[1, -2], [-2, 1]]
-        G = SymmetricLinearGame(L, K, e1, e2)
-        self.assertTrue(G.solution().game_value() < -options.ABS_TOL)
-
-
-    def assert_scaling_works(self, L, K, e1, e2):
-        """
-        Test that scaling ``L`` by a nonnegative number scales the value
-        of the game by the same number.
-        """
-        game1 = SymmetricLinearGame(L, K, e1, e2)
-        value1 = game1.solution().game_value()
-
-        alpha = uniform(0.1, 10)
-        game2 = SymmetricLinearGame(alpha*L, K, e1, e2)
-        value2 = game2.solution().game_value()
-        self.assert_within_tol(alpha*value1, value2)
-
-
-    def test_scaling_orthant(self):
-        """
-        Test that scaling ``L`` by a nonnegative number scales the value
-        of the game by the same number over the nonnegative orthant.
-        """
-        (L, K, e1, e2) = _random_orthant_params()
-        self.assert_scaling_works(L, K, e1, e2)
-
-
-    def test_scaling_icecream(self):
-        """
-        The same test as :meth:`test_nonnegative_scaling_orthant`,
-        except over the ice cream cone.
-        """
-        (L, K, e1, e2) = _random_icecream_params()
-        self.assert_scaling_works(L, K, e1, e2)
-
-
-    def assert_translation_works(self, L, K, e1, e2):
-        """
-        Check that translating ``L`` by alpha*(e1*e2.trans()) increases
-        the value of the associated game by alpha.
-        """
-        # We need to use ``L`` later, so make sure we transpose it
-        # before passing it in as a column-indexed matrix.
-        game1 = SymmetricLinearGame(L.trans(), K, e1, e2)
-        soln1 = game1.solution()
-        value1 = soln1.game_value()
-        x_bar = soln1.player1_optimal()
-        y_bar = soln1.player2_optimal()
-
-        alpha = uniform(-10, 10)
-        tensor_prod = e1*e2.trans()
-
-        # This is the "correct" representation of ``M``, but COLUMN
-        # indexed...
-        M = L + alpha*tensor_prod
-
-        # so we have to transpose it when we feed it to the constructor.
-        game2 = SymmetricLinearGame(M.trans(), K, e1, e2)
-        value2 = game2.solution().game_value()
-
-        self.assert_within_tol(value1 + alpha, value2)
-
-        # Make sure the same optimal pair works.
-        self.assert_within_tol(value2, inner_product(M*x_bar, y_bar))
-
-
-    def test_translation_orthant(self):
-        """
-        Test that translation works over the nonnegative orthant.
-        """
-        (L, K, e1, e2) = _random_orthant_params()
-        self.assert_translation_works(L, K, e1, e2)
-
-
-    def test_translation_icecream(self):
-        """
-        The same as :meth:`test_translation_orthant`, except over the
-        ice cream cone.
-        """
-        (L, K, e1, e2) = _random_icecream_params()
-        self.assert_translation_works(L, K, e1, e2)
-
-
-    def assert_opposite_game_works(self, L, K, e1, e2):
-        """
-        Check the value of the "opposite" game that gives rise to a
-        value that is the negation of the original game. Comes from
-        some corollary.
-        """
-        # We need to use ``L`` later, so make sure we transpose it
-        # before passing it in as a column-indexed matrix.
-        game1 = SymmetricLinearGame(L.trans(), K, e1, e2)
-
-        # This is the "correct" representation of ``M``, but
-        # COLUMN indexed...
-        M = -L.trans()
-
-        # so we have to transpose it when we feed it to the constructor.
-        game2 = SymmetricLinearGame(M.trans(), K, e2, e1)
-
-        soln1 = game1.solution()
-        x_bar = soln1.player1_optimal()
-        y_bar = soln1.player2_optimal()
-        soln2 = game2.solution()
-
-        self.assert_within_tol(-soln1.game_value(), soln2.game_value())
-
-        # Make sure the switched optimal pair works.
-        self.assert_within_tol(soln2.game_value(),
-                               inner_product(M*y_bar, x_bar))
-
-
-    def test_opposite_game_orthant(self):
-        """
-        Test the value of the "opposite" game over the nonnegative
-        orthant.
-        """
-        (L, K, e1, e2) = _random_orthant_params()
-        self.assert_opposite_game_works(L, K, e1, e2)
-
-
-    def test_opposite_game_icecream(self):
-        """
-        Like :meth:`test_opposite_game_orthant`, except over the
-        ice-cream cone.
-        """
-        (L, K, e1, e2) = _random_icecream_params()
-        self.assert_opposite_game_works(L, K, e1, e2)
-
-
-    def assert_orthogonality(self, L, K, e1, e2):
-        """
-        Two orthogonality relations hold at an optimal solution, and we
-        check them here.
-        """
-        # We need to use ``L`` later, so make sure we transpose it
-        # before passing it in as a column-indexed matrix.
-        game = SymmetricLinearGame(L.trans(), K, e1, e2)
-        soln = game.solution()
-        x_bar = soln.player1_optimal()
-        y_bar = soln.player2_optimal()
-        value = soln.game_value()
-
-        ip1 = inner_product(y_bar, L*x_bar - value*e1)
-        self.assert_within_tol(ip1, 0)
-
-        ip2 = inner_product(value*e2 - L.trans()*y_bar, x_bar)
-        self.assert_within_tol(ip2, 0)
-
-
-    def test_orthogonality_orthant(self):
-        """
-        Check the orthgonality relationships that hold for a solution
-        over the nonnegative orthant.
-        """
-        (L, K, e1, e2) = _random_orthant_params()
-        self.assert_orthogonality(L, K, e1, e2)
-
-
-    def test_orthogonality_icecream(self):
-        """
-        Check the orthgonality relationships that hold for a solution
-        over the ice-cream cone.
-        """
-        (L, K, e1, e2) = _random_icecream_params()
-        self.assert_orthogonality(L, K, e1, e2)
-
-
-    def test_positive_operator_value(self):
-        """
-        Test that a positive operator on the nonnegative orthant gives
-        rise to a a game with a nonnegative value.
-
-        This test theoretically applies to the ice-cream cone as well,
-        but we don't know how to make positive operators on that cone.
-        """
-        (K, e1, e2) = _random_orthant_params()[1:]
-        L = _random_nonnegative_matrix(K.dimension())
-
-        game = SymmetricLinearGame(L, K, e1, e2)
-        self.assertTrue(game.solution().game_value() >= -options.ABS_TOL)
-
-
-    def assert_lyapunov_works(self, L, K, e1, e2):
-        """
-        Check that Lyapunov games act the way we expect.
-        """
-        game = SymmetricLinearGame(L, K, e1, e2)
-        soln = game.solution()
-
-        # We only check for positive/negative stability if the game
-        # value is not basically zero. If the value is that close to
-        # zero, we just won't check any assertions.
-        eigs = eigenvalues_re(L)
-        if soln.game_value() > options.ABS_TOL:
-            # L should be positive stable
-            positive_stable = all([eig > -options.ABS_TOL for eig in eigs])
-            self.assertTrue(positive_stable)
-        elif soln.game_value() < -options.ABS_TOL:
-            # L should be negative stable
-            negative_stable = all([eig < options.ABS_TOL for eig in eigs])
-            self.assertTrue(negative_stable)
-
-        # The dual game's value should always equal the primal's.
-        dualsoln = game.dual().solution()
-        self.assert_within_tol(dualsoln.game_value(), soln.game_value())
-
-
-    def test_lyapunov_orthant(self):
-        """
-        Test that a Lyapunov game on the nonnegative orthant works.
-        """
-        (K, e1, e2) = _random_orthant_params()[1:]
-        L = _random_diagonal_matrix(K.dimension())
-
-        self.assert_lyapunov_works(L, K, e1, e2)
-
-
-    def test_lyapunov_icecream(self):
-        """
-        Test that a Lyapunov game on the ice-cream cone works.
-        """
-        (K, e1, e2) = _random_icecream_params()[1:]
-        L = _random_lyapunov_like_icecream(K.dimension())
-
-        self.assert_lyapunov_works(L, K, e1, e2)
index 7051b9c3ceb3ab28b9dc1d90939d99537123f406..4025647cbe8bb23a1e57e148f48ee8c3fef9bb89 100644 (file)
@@ -15,12 +15,14 @@ from dunshire import cones
 from dunshire import errors
 from dunshire import matrices
 from dunshire import games
+import symmetric_linear_game_test
 
 suite = TestSuite()
 suite.addTest(DocTestSuite(cones))
 suite.addTest(DocTestSuite(errors))
 suite.addTest(DocTestSuite(matrices))
 suite.addTest(DocTestSuite(games))
-suite.addTest(TestLoader().loadTestsFromModule(games))
-runner = TextTestRunner(verbosity=2)
+suite.addTest(DocTestSuite(symmetric_linear_game_test))
+suite.addTest(TestLoader().loadTestsFromModule(symmetric_linear_game_test))
+runner = TextTestRunner(verbosity=1)
 runner.run(suite)
diff --git a/test/symmetric_linear_game_test.py b/test/symmetric_linear_game_test.py
new file mode 100644 (file)
index 0000000..5adbb2d
--- /dev/null
@@ -0,0 +1,408 @@
+# These few are used only for tests.
+from math import sqrt
+from random import randint, uniform
+from unittest import TestCase
+
+from cvxopt import matrix
+from dunshire.cones import NonnegativeOrthant, IceCream
+from dunshire.games import SymmetricLinearGame
+from dunshire.matrices import (append_col, append_row, eigenvalues_re,
+                               identity, inner_product)
+from dunshire import options
+
+def _random_matrix(dims):
+    """
+    Generate a random square (``dims``-by-``dims``) matrix. This is used
+    only by the :class:`SymmetricLinearGameTest` class.
+    """
+    return matrix([[uniform(-10, 10) for i in range(dims)]
+                   for j in range(dims)])
+
+def _random_nonnegative_matrix(dims):
+    """
+    Generate a random square (``dims``-by-``dims``) matrix with
+    nonnegative entries. This is used only by the
+    :class:`SymmetricLinearGameTest` class.
+    """
+    L = _random_matrix(dims)
+    return matrix([abs(entry) for entry in L], (dims, dims))
+
+def _random_diagonal_matrix(dims):
+    """
+    Generate a random square (``dims``-by-``dims``) matrix with nonzero
+    entries only on the diagonal. This is used only by the
+    :class:`SymmetricLinearGameTest` class.
+    """
+    return matrix([[uniform(-10, 10)*int(i == j) for i in range(dims)]
+                   for j in range(dims)])
+
+
+def _random_skew_symmetric_matrix(dims):
+    """
+    Generate a random skew-symmetrix (``dims``-by-``dims``) matrix.
+
+    Examples
+    --------
+
+        >>> from dunshire.matrices import norm
+        >>> A = _random_skew_symmetric_matrix(randint(1, 10))
+        >>> norm(A + A.trans()) < options.ABS_TOL
+        True
+
+    """
+    strict_ut = [[uniform(-10, 10)*int(i < j) for i in range(dims)]
+                 for j in range(dims)]
+
+    strict_ut = matrix(strict_ut, (dims, dims))
+    return strict_ut - strict_ut.trans()
+
+
+def _random_lyapunov_like_icecream(dims):
+    """
+    Generate a random Lyapunov-like matrix over the ice-cream cone in
+    ``dims`` dimensions.
+    """
+    a = matrix([uniform(-10, 10)], (1, 1))
+    b = matrix([uniform(-10, 10) for idx in range(dims-1)], (dims-1, 1))
+    D = _random_skew_symmetric_matrix(dims-1) + a*identity(dims-1)
+    row1 = append_col(a, b.trans())
+    row2 = append_col(b, D)
+    return append_row(row1, row2)
+
+
+def _random_orthant_params():
+    """
+    Generate the ``L``, ``K``, ``e1``, and ``e2`` parameters for a
+    random game over the nonnegative orthant. This is only used by
+    the :class:`SymmetricLinearGameTest` class.
+    """
+    ambient_dim = randint(1, 10)
+    K = NonnegativeOrthant(ambient_dim)
+    e1 = [uniform(0.5, 10) for idx in range(K.dimension())]
+    e2 = [uniform(0.5, 10) for idx in range(K.dimension())]
+    L = _random_matrix(K.dimension())
+    return (L, K, matrix(e1), matrix(e2))
+
+
+def _random_icecream_params():
+    """
+    Generate the ``L``, ``K``, ``e1``, and ``e2`` parameters for a
+    random game over the ice cream cone. This is only used by
+    the :class:`SymmetricLinearGameTest` class.
+    """
+    # Use a minimum dimension of two to avoid divide-by-zero in
+    # the fudge factor we make up later.
+    ambient_dim = randint(2, 10)
+    K = IceCream(ambient_dim)
+    e1 = [1] # Set the "height" of e1 to one
+    e2 = [1] # And the same for e2
+
+    # If we choose the rest of the components of e1,e2 randomly
+    # between 0 and 1, then the largest the squared norm of the
+    # non-height part of e1,e2 could be is the 1*(dim(K) - 1). We
+    # need to make it less than one (the height of the cone) so
+    # that the whole thing is in the cone. The norm of the
+    # non-height part is sqrt(dim(K) - 1), and we can divide by
+    # twice that.
+    fudge_factor = 1.0 / (2.0*sqrt(K.dimension() - 1.0))
+    e1 += [fudge_factor*uniform(0, 1) for idx in range(K.dimension() - 1)]
+    e2 += [fudge_factor*uniform(0, 1) for idx in range(K.dimension() - 1)]
+    L = _random_matrix(K.dimension())
+
+    return (L, K, matrix(e1), matrix(e2))
+
+
+# Tell pylint to shut up about the large number of methods.
+class SymmetricLinearGameTest(TestCase): # pylint: disable=R0904
+    """
+    Tests for the SymmetricLinearGame and Solution classes.
+    """
+    def assert_within_tol(self, first, second):
+        """
+        Test that ``first`` and ``second`` are equal within our default
+        tolerance.
+        """
+        self.assertTrue(abs(first - second) < options.ABS_TOL)
+
+
+    def assert_norm_within_tol(self, first, second):
+        """
+        Test that ``first`` and ``second`` vectors are equal in the
+        sense that the norm of their difference is within our default
+        tolerance.
+        """
+        self.assert_within_tol(norm(first - second), 0)
+
+
+    def assert_solution_exists(self, L, K, e1, e2):
+        """
+        Given the parameters needed to construct a SymmetricLinearGame,
+        ensure that that game has a solution.
+        """
+        # The matrix() constructor assumes that ``L`` is a list of
+        # columns, so we transpose it to agree with what
+        # SymmetricLinearGame() thinks.
+        G = SymmetricLinearGame(L.trans(), K, e1, e2)
+        soln = G.solution()
+
+        expected = inner_product(L*soln.player1_optimal(),
+                                 soln.player2_optimal())
+        self.assert_within_tol(soln.game_value(), expected)
+
+
+    def test_solution_exists_orthant(self):
+        """
+        Every linear game has a solution, so we should be able to solve
+        every symmetric linear game over the NonnegativeOrthant. Pick
+        some parameters randomly and give it a shot. The resulting
+        optimal solutions should give us the optimal game value when we
+        apply the payoff operator to them.
+        """
+        (L, K, e1, e2) = _random_orthant_params()
+        self.assert_solution_exists(L, K, e1, e2)
+
+
+    def test_solution_exists_icecream(self):
+        """
+        Like :meth:`test_solution_exists_nonnegative_orthant`, except
+        over the ice cream cone.
+        """
+        (L, K, e1, e2) = _random_icecream_params()
+        self.assert_solution_exists(L, K, e1, e2)
+
+
+    def test_negative_value_z_operator(self):
+        """
+        Test the example given in Gowda/Ravindran of a Z-matrix with
+        negative game value on the nonnegative orthant.
+        """
+        K = NonnegativeOrthant(2)
+        e1 = [1, 1]
+        e2 = e1
+        L = [[1, -2], [-2, 1]]
+        G = SymmetricLinearGame(L, K, e1, e2)
+        self.assertTrue(G.solution().game_value() < -options.ABS_TOL)
+
+
+    def assert_scaling_works(self, L, K, e1, e2):
+        """
+        Test that scaling ``L`` by a nonnegative number scales the value
+        of the game by the same number.
+        """
+        game1 = SymmetricLinearGame(L, K, e1, e2)
+        value1 = game1.solution().game_value()
+
+        alpha = uniform(0.1, 10)
+        game2 = SymmetricLinearGame(alpha*L, K, e1, e2)
+        value2 = game2.solution().game_value()
+        self.assert_within_tol(alpha*value1, value2)
+
+
+    def test_scaling_orthant(self):
+        """
+        Test that scaling ``L`` by a nonnegative number scales the value
+        of the game by the same number over the nonnegative orthant.
+        """
+        (L, K, e1, e2) = _random_orthant_params()
+        self.assert_scaling_works(L, K, e1, e2)
+
+
+    def test_scaling_icecream(self):
+        """
+        The same test as :meth:`test_nonnegative_scaling_orthant`,
+        except over the ice cream cone.
+        """
+        (L, K, e1, e2) = _random_icecream_params()
+        self.assert_scaling_works(L, K, e1, e2)
+
+
+    def assert_translation_works(self, L, K, e1, e2):
+        """
+        Check that translating ``L`` by alpha*(e1*e2.trans()) increases
+        the value of the associated game by alpha.
+        """
+        # We need to use ``L`` later, so make sure we transpose it
+        # before passing it in as a column-indexed matrix.
+        game1 = SymmetricLinearGame(L.trans(), K, e1, e2)
+        soln1 = game1.solution()
+        value1 = soln1.game_value()
+        x_bar = soln1.player1_optimal()
+        y_bar = soln1.player2_optimal()
+
+        alpha = uniform(-10, 10)
+        tensor_prod = e1*e2.trans()
+
+        # This is the "correct" representation of ``M``, but COLUMN
+        # indexed...
+        M = L + alpha*tensor_prod
+
+        # so we have to transpose it when we feed it to the constructor.
+        game2 = SymmetricLinearGame(M.trans(), K, e1, e2)
+        value2 = game2.solution().game_value()
+
+        self.assert_within_tol(value1 + alpha, value2)
+
+        # Make sure the same optimal pair works.
+        self.assert_within_tol(value2, inner_product(M*x_bar, y_bar))
+
+
+    def test_translation_orthant(self):
+        """
+        Test that translation works over the nonnegative orthant.
+        """
+        (L, K, e1, e2) = _random_orthant_params()
+        self.assert_translation_works(L, K, e1, e2)
+
+
+    def test_translation_icecream(self):
+        """
+        The same as :meth:`test_translation_orthant`, except over the
+        ice cream cone.
+        """
+        (L, K, e1, e2) = _random_icecream_params()
+        self.assert_translation_works(L, K, e1, e2)
+
+
+    def assert_opposite_game_works(self, L, K, e1, e2):
+        """
+        Check the value of the "opposite" game that gives rise to a
+        value that is the negation of the original game. Comes from
+        some corollary.
+        """
+        # We need to use ``L`` later, so make sure we transpose it
+        # before passing it in as a column-indexed matrix.
+        game1 = SymmetricLinearGame(L.trans(), K, e1, e2)
+
+        # This is the "correct" representation of ``M``, but
+        # COLUMN indexed...
+        M = -L.trans()
+
+        # so we have to transpose it when we feed it to the constructor.
+        game2 = SymmetricLinearGame(M.trans(), K, e2, e1)
+
+        soln1 = game1.solution()
+        x_bar = soln1.player1_optimal()
+        y_bar = soln1.player2_optimal()
+        soln2 = game2.solution()
+
+        self.assert_within_tol(-soln1.game_value(), soln2.game_value())
+
+        # Make sure the switched optimal pair works.
+        self.assert_within_tol(soln2.game_value(),
+                               inner_product(M*y_bar, x_bar))
+
+
+    def test_opposite_game_orthant(self):
+        """
+        Test the value of the "opposite" game over the nonnegative
+        orthant.
+        """
+        (L, K, e1, e2) = _random_orthant_params()
+        self.assert_opposite_game_works(L, K, e1, e2)
+
+
+    def test_opposite_game_icecream(self):
+        """
+        Like :meth:`test_opposite_game_orthant`, except over the
+        ice-cream cone.
+        """
+        (L, K, e1, e2) = _random_icecream_params()
+        self.assert_opposite_game_works(L, K, e1, e2)
+
+
+    def assert_orthogonality(self, L, K, e1, e2):
+        """
+        Two orthogonality relations hold at an optimal solution, and we
+        check them here.
+        """
+        # We need to use ``L`` later, so make sure we transpose it
+        # before passing it in as a column-indexed matrix.
+        game = SymmetricLinearGame(L.trans(), K, e1, e2)
+        soln = game.solution()
+        x_bar = soln.player1_optimal()
+        y_bar = soln.player2_optimal()
+        value = soln.game_value()
+
+        ip1 = inner_product(y_bar, L*x_bar - value*e1)
+        self.assert_within_tol(ip1, 0)
+
+        ip2 = inner_product(value*e2 - L.trans()*y_bar, x_bar)
+        self.assert_within_tol(ip2, 0)
+
+
+    def test_orthogonality_orthant(self):
+        """
+        Check the orthgonality relationships that hold for a solution
+        over the nonnegative orthant.
+        """
+        (L, K, e1, e2) = _random_orthant_params()
+        self.assert_orthogonality(L, K, e1, e2)
+
+
+    def test_orthogonality_icecream(self):
+        """
+        Check the orthgonality relationships that hold for a solution
+        over the ice-cream cone.
+        """
+        (L, K, e1, e2) = _random_icecream_params()
+        self.assert_orthogonality(L, K, e1, e2)
+
+
+    def test_positive_operator_value(self):
+        """
+        Test that a positive operator on the nonnegative orthant gives
+        rise to a a game with a nonnegative value.
+
+        This test theoretically applies to the ice-cream cone as well,
+        but we don't know how to make positive operators on that cone.
+        """
+        (K, e1, e2) = _random_orthant_params()[1:]
+        L = _random_nonnegative_matrix(K.dimension())
+
+        game = SymmetricLinearGame(L, K, e1, e2)
+        self.assertTrue(game.solution().game_value() >= -options.ABS_TOL)
+
+
+    def assert_lyapunov_works(self, L, K, e1, e2):
+        """
+        Check that Lyapunov games act the way we expect.
+        """
+        game = SymmetricLinearGame(L, K, e1, e2)
+        soln = game.solution()
+
+        # We only check for positive/negative stability if the game
+        # value is not basically zero. If the value is that close to
+        # zero, we just won't check any assertions.
+        eigs = eigenvalues_re(L)
+        if soln.game_value() > options.ABS_TOL:
+            # L should be positive stable
+            positive_stable = all([eig > -options.ABS_TOL for eig in eigs])
+            self.assertTrue(positive_stable)
+        elif soln.game_value() < -options.ABS_TOL:
+            # L should be negative stable
+            negative_stable = all([eig < options.ABS_TOL for eig in eigs])
+            self.assertTrue(negative_stable)
+
+        # The dual game's value should always equal the primal's.
+        dualsoln = game.dual().solution()
+        self.assert_within_tol(dualsoln.game_value(), soln.game_value())
+
+
+    def test_lyapunov_orthant(self):
+        """
+        Test that a Lyapunov game on the nonnegative orthant works.
+        """
+        (K, e1, e2) = _random_orthant_params()[1:]
+        L = _random_diagonal_matrix(K.dimension())
+
+        self.assert_lyapunov_works(L, K, e1, e2)
+
+
+    def test_lyapunov_icecream(self):
+        """
+        Test that a Lyapunov game on the ice-cream cone works.
+        """
+        (K, e1, e2) = _random_icecream_params()[1:]
+        L = _random_lyapunov_like_icecream(K.dimension())
+
+        self.assert_lyapunov_works(L, K, e1, e2)