return Qs
-def random_eja():
+def RealSymmetricSimpleEJA(n):
"""
- Return a "random" finite-dimensional Euclidean Jordan Algebra.
-
- ALGORITHM:
-
- For now, we choose a random natural number ``n`` (greater than zero)
- and then give you back one of the following:
-
- * The cartesian product of the rational numbers ``n`` times; this is
- ``QQ^n`` with the Hadamard product.
-
- * The Jordan spin algebra on ``QQ^n``.
-
- * The ``n``-by-``n`` rational symmetric matrices with the symmetric
- product.
+ The rank-n simple EJA consisting of real symmetric n-by-n
+ matrices, the usual symmetric Jordan product, and the trace inner
+ product. It has dimension `(n^2 + n)/2` over the reals.
+ """
+ pass
- Later this might be extended to return Cartesian products of the
- EJAs above.
+def ComplexHermitianSimpleEJA(n):
+ """
+ The rank-n simple EJA consisting of complex Hermitian n-by-n
+ matrices over the real numbers, the usual symmetric Jordan product,
+ and the real-part-of-trace inner product. It has dimension `n^2 over
+ the reals.
+ """
+ pass
- TESTS::
+def QuaternionHermitianSimpleEJA(n):
+ """
+ The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
+ matrices, the usual symmetric Jordan product, and the
+ real-part-of-trace inner product. It has dimension `2n^2 - n` over
+ the reals.
+ """
+ pass
- sage: random_eja()
- Euclidean Jordan algebra of degree...
+def OctonionHermitianSimpleEJA(n):
+ """
+ This shit be crazy. It has dimension 27 over the reals.
+ """
+ n = 3
+ pass
+def JordanSpinSimpleEJA(n):
"""
- n = ZZ.random_element(1,10).abs()
- constructor = choice([eja_rn, eja_ln, eja_sn])
- return constructor(dimension=n, field=QQ)
+ The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
+ with the usual inner product and jordan product ``x*y =
+ (<x_bar,y_bar>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
+ the reals.
+ """
+ pass