A[i,j] = 0
return P,A,D
+
+
+def block_ldlt_naive(A, check_hermitian=False):
+ r"""
+ Perform a block-`LDL^{T}` factorization of the Hermitian
+ matrix `A`.
+
+ This is a naive, recursive implementation akin to
+ ``ldlt_naive()``, where the pivots (and resulting diagonals) are
+ either `1 \times 1` or `2 \times 2` blocks. The pivots are chosen
+ using the Bunch-Kaufmann scheme that is both fast and numerically
+ stable.
+
+ OUTPUT:
+
+ A triple `(P,L,D)` such that `A = PLDL^{T}P^{T}` and where,
+
+ * `P` is a permutation matrix
+ * `L` is unit lower-triangular
+ * `D` is a block-diagonal matrix whose entries are decreasing
+ from top-left to bottom-right and whose blocks are of size
+ one or two.
+ """
+ n = A.nrows()
+
+ # Use the fraction field of the given matrix so that division will work
+ # when (for example) our matrix consists of integer entries.
+ ring = A.base_ring().fraction_field()
+
+ if n == 0 or n == 1:
+ # We can get n == 0 if someone feeds us a trivial matrix.
+ P = matrix.identity(ring, n)
+ L = matrix.identity(ring, n)
+ D = A
+ return (P,L,D)
+
+ alpha = (1 + ZZ(17).sqrt()) * ~ZZ(8)
+ A1 = A.change_ring(ring)
+
+ # Bunch-Kaufmann step 1, Higham step "zero." We use Higham's
+ # "omega" notation instead of Bunch-Kaufman's "lamda" because
+ # lambda means other things in the same context.
+ column_1_subdiag = A1[1:,0].list()
+ omega_1 = max([ a_i1.abs() for a_i1 in column_1_subdiag ])
+
+ if omega_1 == 0:
+ # "There's nothing to do at this step of the algorithm,"
+ # which means that our matrix looks like,
+ #
+ # [ 1 0 ]
+ # [ 0 B ]
+ #
+ B = A1[1:,1:]
+ P2, L2, D2 = ldlt_naive(B)
+ P1 = block_matrix(2,2, [[ZZ(1), ZZ(0)],
+ [ZZ(0), P2]])
+ L1 = block_matrix(2,2, [[ZZ(1), ZZ(0)],
+ [ZZ(0), L2]])
+ D1 = block_matrix(2,2, [[ZZ(1), ZZ(0)],
+ [ZZ(0), D2]])
+ return (P1,L1,D1)
+
+ if A1[0,0].abs() > alpha*omega_1:
+ # Higham step (1)
+ # The top-left entry is our 1x1 pivot.
+ C = A1[1:n,0]
+ B = A1[1:,1:]
+
+ P2, L2, D2 = block_ldlt_naive(B - (C*C.transpose())/A1[0,0])
+
+ P1 = block_matrix(2,2, [[ZZ(1), ZZ(0)],
+ [0*C, P2]])
+ L1 = block_matrix(2,2, [[ZZ(1), ZZ(0)],
+ [P2.transpose()*C/A1[0,0], L2]])
+ D1 = block_matrix(2,2, [[A1[0,0], ZZ(0)],
+ [0*C, D2]])
+
+ return (P1,L1,D1)
+
+
+ r = 1 + column_1_subdiag.index(omega_1)
+
+ # If the matrix is Hermitian, we need only look at the above-
+ # diagonal entries to find the off-diagonal of maximal magnitude.
+ omega_r = max( a_rj.abs() for a_rj in A1[:r,r].list() )
+
+ if A1[0,0].abs()*omega_r >= alpha*(omega_1^2):
+ # Higham step (2)
+ # The top-left entry is our 1x1 pivot.
+ C = A1[1:n,0]
+ B = A1[1:,1:]
+
+ P2, L2, D2 = block_ldlt_naive(B - (C*C.transpose())/A1[0,0])
+
+ P1 = block_matrix(2,2, [[ZZ(1), ZZ(0)],
+ [0*C, P2]])
+ L1 = block_matrix(2,2, [[ZZ(1), ZZ(0)],
+ [P2.transpose()*C/A1[0,0], L2]])
+ D1 = block_matrix(2,2, [[A1[0,0], ZZ(0)],
+ [0*C, D2]])
+
+ return (P1,L1,D1)
+
+
+ if A1[r,r].abs() > alpha*omega_r:
+ # Higham step (3)
+ # Another 1x1 pivot, but this time swapping indices 0,r.
+ P1 = copy(A1.matrix_space().identity_matrix())
+ P1.swap_rows(0,s)
+ A1 = P1.T * A1 * P1
+
+ # The top-left entry is now our 1x1 pivot.
+ C = A1[1:n,0]
+ B = A1[1:,1:]
+
+ P2, L2, D2 = block_ldlt_naive(B - (C*C.transpose())/A1[0,0])
+
+ P1 = P1*block_matrix(2,2, [[ZZ(1), ZZ(0)],
+ [0*C, P2]])
+ L1 = block_matrix(2,2, [[ZZ(1), ZZ(0)],
+ [P2.transpose()*C/A1[0,0], L2]])
+ D1 = block_matrix(2,2, [[A1[0,0], ZZ(0)],
+ [0*C, D2]])
+
+ return (P1,L1,D1)
+
+ # Higham step (4)
+ # If we made it here, we have to do a 2x2 pivot.
+ return None