]> gitweb.michael.orlitzky.com - dunshire.git/commitdiff
Add and update a few test case docstrings.
authorMichael Orlitzky <michael@orlitzky.com>
Sun, 13 Nov 2016 20:43:01 +0000 (15:43 -0500)
committerMichael Orlitzky <michael@orlitzky.com>
Sun, 13 Nov 2016 20:43:01 +0000 (15:43 -0500)
test/symmetric_linear_game_test.py

index b9c29fe68056f52da980443809e881ce6faa28ad..0f94305e1892a97f2a6dd8dc8afb582702bd2fd1 100644 (file)
@@ -43,17 +43,28 @@ class SymmetricLinearGameTest(TestCase): # pylint: disable=R0904
 
 
     def test_solutions_dont_change_orthant(self):
+        """
+        If we solve the same game twice over the nonnegative orthant,
+        then we should get the same solution both times. The solution to
+        a game is not unique, but the process we use is (as far as we
+        know) deterministic.
+        """
         G = random_orthant_game()
         self.assert_solutions_dont_change(G)
 
     def test_solutions_dont_change_icecream(self):
+        """
+        If we solve the same game twice over the ice-cream cone, then we
+        should get the same solution both times. The solution to a game
+        is not unique, but the process we use is (as far as we know)
+        deterministic.
+        """
         G = random_icecream_game()
         self.assert_solutions_dont_change(G)
 
     def assert_solutions_dont_change(self, G):
         """
-        If we solve the same problem twice, we should get
-        the same answer both times.
+        Solve ``G`` twice and check that the solutions agree.
         """
         soln1 = G.solution()
         soln2 = G.solution()
@@ -69,6 +80,10 @@ class SymmetricLinearGameTest(TestCase): # pylint: disable=R0904
 
 
     def assert_player1_start_valid(self, G):
+        """
+        Ensure that player one's starting point satisfies both the
+        equality and cone inequality in the CVXOPT primal problem.
+        """
         x = G.player1_start()['x']
         s = G.player1_start()['s']
         s1 = s[0:G.dimension()]
@@ -79,7 +94,8 @@ class SymmetricLinearGameTest(TestCase): # pylint: disable=R0904
 
     def test_player1_start_valid_orthant(self):
         """
-        Ensure that player one's starting point is in the orthant.
+        Ensure that player one's starting point is feasible over the
+        nonnegative orthant.
         """
         G = random_orthant_game()
         self.assert_player1_start_valid(G)
@@ -87,13 +103,18 @@ class SymmetricLinearGameTest(TestCase): # pylint: disable=R0904
 
     def test_player1_start_valid_icecream(self):
         """
-        Ensure that player one's starting point is in the ice-cream cone.
+        Ensure that player one's starting point is feasible over the
+        ice-cream cone.
         """
         G = random_icecream_game()
         self.assert_player1_start_valid(G)
 
 
     def assert_player2_start_valid(self, G):
+        """
+        Check that player two's starting point satisfies both the
+        cone inequality in the CVXOPT dual problem.
+        """
         z = G.player2_start()['z']
         z1 = z[0:G.dimension()]
         z2 = z[G.dimension():]
@@ -102,7 +123,8 @@ class SymmetricLinearGameTest(TestCase): # pylint: disable=R0904
 
     def test_player2_start_valid_orthant(self):
         """
-        Ensure that player two's starting point is in the orthant.
+        Ensure that player two's starting point is feasible over the
+        nonnegative orthant.
         """
         G = random_orthant_game()
         self.assert_player2_start_valid(G)
@@ -110,7 +132,8 @@ class SymmetricLinearGameTest(TestCase): # pylint: disable=R0904
 
     def test_player2_start_valid_icecream(self):
         """
-        Ensure that player two's starting point is in the ice-cream cone.
+        Ensure that player two's starting point is feasible over the
+        ice-cream cone.
         """
         G = random_icecream_game()
         self.assert_player2_start_valid(G)
@@ -225,12 +248,16 @@ class SymmetricLinearGameTest(TestCase): # pylint: disable=R0904
         y_bar = soln1.player2_optimal()
         soln2 = H.solution()
 
-        mod = G.tolerance_scale(soln1)
-        self.assert_within_tol(-soln1.game_value(), soln2.game_value(), mod)
+        modifier = G.tolerance_scale(soln1)
+        self.assert_within_tol(-soln1.game_value(),
+                               soln2.game_value(),
+                               modifier)
 
         # Make sure the switched optimal pair works. Since x_bar and
         # y_bar come from G, we use the same modifier.
-        self.assert_within_tol(soln2.game_value(), H.payoff(y_bar, x_bar), mod)
+        self.assert_within_tol(soln2.game_value(),
+                               H.payoff(y_bar, x_bar),
+                               modifier)