]> gitweb.michael.orlitzky.com - sage.d.git/commitdiff
eja: drop the "Ng" from the new constructor.
authorMichael Orlitzky <michael@orlitzky.com>
Mon, 30 Nov 2020 15:17:19 +0000 (10:17 -0500)
committerMichael Orlitzky <michael@orlitzky.com>
Mon, 30 Nov 2020 15:17:19 +0000 (10:17 -0500)
mjo/eja/eja_algebra.py

index b83f4a5c322e13b93303378a2aeab5377ec307fe..effafd42f0a6f20dd1ba391da138fbd601fe0a85 100644 (file)
@@ -1120,7 +1120,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
 
     Element = FiniteDimensionalEuclideanJordanAlgebraElement
 
-class RationalBasisEuclideanJordanAlgebraNg(FiniteDimensionalEuclideanJordanAlgebra):
+class RationalBasisEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
     r"""
     New class for algebras whose supplied basis elements have all rational entries.
 
@@ -1323,7 +1323,7 @@ class RationalBasisEuclideanJordanAlgebraNg(FiniteDimensionalEuclideanJordanAlge
         if self.base_ring() is QQ:
             # There's no need to construct *another* algebra over the
             # rationals if this one is already over the rationals.
-            superclass = super(RationalBasisEuclideanJordanAlgebraNg, self)
+            superclass = super(RationalBasisEuclideanJordanAlgebra, self)
             return superclass._charpoly_coefficients()
 
         # Do the computation over the rationals. The answer will be
@@ -2284,7 +2284,7 @@ class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra,
         return cls(n, field, **kwargs)
 
 
-class HadamardEJA(RationalBasisEuclideanJordanAlgebraNg,
+class HadamardEJA(RationalBasisEuclideanJordanAlgebra,
                   ConcreteEuclideanJordanAlgebra):
     """
     Return the Euclidean Jordan Algebra corresponding to the set
@@ -2362,7 +2362,7 @@ class HadamardEJA(RationalBasisEuclideanJordanAlgebraNg,
         return cls(n, field, **kwargs)
 
 
-class BilinearFormEJA(RationalBasisEuclideanJordanAlgebraNg,
+class BilinearFormEJA(RationalBasisEuclideanJordanAlgebra,
                       ConcreteEuclideanJordanAlgebra):
     r"""
     The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``