Element = FiniteDimensionalEuclideanJordanAlgebraElement
-class RationalBasisEuclideanJordanAlgebraNg(FiniteDimensionalEuclideanJordanAlgebra):
+class RationalBasisEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
r"""
New class for algebras whose supplied basis elements have all rational entries.
if self.base_ring() is QQ:
# There's no need to construct *another* algebra over the
# rationals if this one is already over the rationals.
- superclass = super(RationalBasisEuclideanJordanAlgebraNg, self)
+ superclass = super(RationalBasisEuclideanJordanAlgebra, self)
return superclass._charpoly_coefficients()
# Do the computation over the rationals. The answer will be
return cls(n, field, **kwargs)
-class HadamardEJA(RationalBasisEuclideanJordanAlgebraNg,
+class HadamardEJA(RationalBasisEuclideanJordanAlgebra,
ConcreteEuclideanJordanAlgebra):
"""
Return the Euclidean Jordan Algebra corresponding to the set
return cls(n, field, **kwargs)
-class BilinearFormEJA(RationalBasisEuclideanJordanAlgebraNg,
+class BilinearFormEJA(RationalBasisEuclideanJordanAlgebra,
ConcreteEuclideanJordanAlgebra):
r"""
The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``