Jordan algebras are always power-associative; see for
example Faraut and Koranyi, Proposition II.1.2 (ii).
+
+ .. WARNING:
+
+ We have to override this because our superclass uses row vectors
+ instead of column vectors! We, on the other hand, assume column
+ vectors everywhere.
+
+ EXAMPLES:
+
+ sage: set_random_seed()
+ sage: J = eja_ln(5)
+ sage: x = J.random_element()
+ sage: x.matrix()*x.vector() == (x**2).vector()
+ True
+
"""
A = self.parent()
if n == 0:
elif n == 1:
return self
else:
- return A.element_class(A, self.vector()*(self.matrix()**(n-1)))
+ return A.element_class(A, (self.matrix()**(n-1))*self.vector())
def span_of_powers(self):
sage: x.subalgebra_generated_by().is_associative()
True
- This is buggy right now::
+ Squaring in the subalgebra should be the same thing as
+ squaring in the superalgebra::
sage: J = eja_ln(5)
sage: x = J.random_element()
- sage: x.matrix()*x.vector() == (x**2).vector() # works
- True
sage: u = x.subalgebra_generated_by().random_element()
- sage: u.matrix()*u.vector() == (u**2).vector() # busted
+ sage: u.matrix()*u.vector() == (u**2).vector()
True
"""
# b1 is what we get if we apply that matrix to b1. The
# second row of the right multiplication matrix by b1
# is what we get when we apply that matrix to b2...
+ #
+ # IMPORTANT: this assumes that all vectors are COLUMN
+ # vectors, unlike our superclass (which uses row vectors).
for b_left in V.basis():
eja_b_left = self.parent()(b_left)
# Multiply in the original EJA, but then get the
# subspace... or do we? Can't we just solve, knowing that
# A(c) = u^(s+1) should have a solution in the big space,
# too?
+ #
+ # Beware, solve_right() means that we're using COLUMN vectors.
+ # Our FiniteDimensionalAlgebraElement superclass uses rows.
u_next = u**(s+1)
A = u_next.matrix()
c_coordinates = A.solve_right(u_next.vector())
#
# We need the basis for J, but as elements of the parent algebra.
#
- #
- # TODO: this is buggy, but it's probably because the
- # multiplication table for the subalgebra is wrong! The
- # matrices should be symmetric I bet.
basis = [self.parent(v) for v in V.basis()]
return self.parent().linear_combination(zip(c_coordinates, basis))