Qs.append(Q)
return FiniteDimensionalEuclideanJordanAlgebra(field,Qs,rank=dimension)
+
+
+def random_eja():
+ """
+ Return a "random" finite-dimensional Euclidean Jordan Algebra.
+
+ ALGORITHM:
+
+ For now, we choose a random natural number ``n`` (greater than zero)
+ and then give you back one of the following:
+
+ * The cartesian product of the rational numbers ``n`` times; this is
+ ``QQ^n`` with the Hadamard product.
+
+ * The Jordan spin algebra on ``QQ^n``.
+
+ * The ``n``-by-``n`` rational symmetric matrices with the symmetric
+ product.
+
+ Later this might be extended to return Cartesian products of the
+ EJAs above.
+
+ TESTS::
+
+ sage: random_eja()
+ Euclidean Jordan algebra of degree...
+
+ """
+ n = ZZ.random_element(1,10).abs()
+ constructor = choice([eja_rn, eja_ln, eja_sn])
+ return constructor(dimension=n, field=QQ)