4. Come up with a fast heuristic (like making nu huge and taking e1 as
our point) that finds a primal feasible point.
-
-5. Add a test to ensure that if we solve the same game twice, we get the
- same answer back.
from unittest import TestCase
from dunshire.games import SymmetricLinearGame
-from dunshire.matrices import eigenvalues_re, inner_product
+from dunshire.matrices import eigenvalues_re, inner_product, norm
from dunshire import options
from .randomgen import (random_icecream_game, random_ll_icecream_game,
random_ll_orthant_game, random_nn_scaling,
self.assertTrue(abs(first - second) < options.ABS_TOL*modifier)
+ def test_solutions_dont_change(self):
+ """
+ If we solve the same problem twice, we should get
+ the same answer both times.
+ """
+ G = random_orthant_game()
+ soln1 = G.solution()
+ soln2 = G.solution()
+ p1_diff = norm(soln1.player1_optimal() - soln2.player1_optimal())
+ p2_diff = norm(soln1.player2_optimal() - soln2.player2_optimal())
+ gv_diff = abs(soln1.game_value() - soln2.game_value())
+
+ p1_close = p1_diff < options.ABS_TOL
+ p2_close = p2_diff < options.ABS_TOL
+ gv_close = gv_diff < options.ABS_TOL
+
+ self.assertTrue(p1_close and p2_close and gv_close)
+
def test_condition_lower_bound(self):
"""