]> gitweb.michael.orlitzky.com - sage.d.git/commitdiff
eja: rename JordanSpinAlgebra to JordanSpinEJA.
authorMichael Orlitzky <michael@orlitzky.com>
Sun, 21 Jul 2019 02:25:32 +0000 (22:25 -0400)
committerMichael Orlitzky <michael@orlitzky.com>
Mon, 29 Jul 2019 03:19:01 +0000 (23:19 -0400)
mjo/eja/euclidean_jordan_algebra.py

index 579be23b43cb05228991373550ffb599b46d1b7f..fa112a373315c21f6b50e6b9edf9ced464923d55 100644 (file)
@@ -144,7 +144,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
         ::
 
-            sage: J = JordanSpinAlgebra(2)
+            sage: J = JordanSpinEJA(2)
             sage: J.basis()
             Family (e0, e1)
             sage: J.natural_basis()
@@ -296,7 +296,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             inner product on `R^n` (this example only works because the
             basis for the Jordan algebra is the standard basis in `R^n`)::
 
-                sage: J = JordanSpinAlgebra(3)
+                sage: J = JordanSpinEJA(3)
                 sage: x = vector(QQ,[1,2,3])
                 sage: y = vector(QQ,[4,5,6])
                 sage: x.inner_product(y)
@@ -391,12 +391,12 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
             EXAMPLES::
 
-                sage: J = JordanSpinAlgebra(2)
+                sage: J = JordanSpinEJA(2)
                 sage: e0,e1 = J.gens()
                 sage: x = e0 + e1
                 sage: x.det()
                 0
-                sage: J = JordanSpinAlgebra(3)
+                sage: J = JordanSpinEJA(3)
                 sage: e0,e1,e2 = J.gens()
                 sage: x = e0 + e1 + e2
                 sage: x.det()
@@ -425,7 +425,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
                 sage: set_random_seed()
                 sage: n = ZZ.random_element(1,10)
-                sage: J = JordanSpinAlgebra(n)
+                sage: J = JordanSpinEJA(n)
                 sage: x = J.random_element()
                 sage: while x.is_zero():
                 ....:     x = J.random_element()
@@ -555,7 +555,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
             The identity element always has degree one, but any element
             linearly-independent from it is regular::
 
-                sage: J = JordanSpinAlgebra(5)
+                sage: J = JordanSpinEJA(5)
                 sage: J.one().is_regular()
                 False
                 sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
@@ -580,7 +580,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
             EXAMPLES::
 
-                sage: J = JordanSpinAlgebra(4)
+                sage: J = JordanSpinEJA(4)
                 sage: J.one().degree()
                 1
                 sage: e0,e1,e2,e3 = J.gens()
@@ -592,7 +592,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
                 sage: set_random_seed()
                 sage: n = ZZ.random_element(1,10)
-                sage: J = JordanSpinAlgebra(n)
+                sage: J = JordanSpinEJA(n)
                 sage: x = J.random_element()
                 sage: x == x.coefficient(0)*J.one() or x.degree() == 2
                 True
@@ -624,7 +624,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
                 sage: set_random_seed()
                 sage: n = ZZ.random_element(2,10)
-                sage: J = JordanSpinAlgebra(n)
+                sage: J = JordanSpinEJA(n)
                 sage: y = J.random_element()
                 sage: while y == y.coefficient(0)*J.one():
                 ....:     y = J.random_element()
@@ -784,7 +784,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
                 sage: set_random_seed()
                 sage: n = ZZ.random_element(1,10)
-                sage: J = JordanSpinAlgebra(n)
+                sage: J = JordanSpinEJA(n)
                 sage: x = J.random_element()
                 sage: x_vec = x.vector()
                 sage: x0 = x_vec[0]
@@ -931,7 +931,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
                 sage: c = J.random_element().subalgebra_idempotent()
                 sage: c^2 == c
                 True
-                sage: J = JordanSpinAlgebra(5)
+                sage: J = JordanSpinEJA(5)
                 sage: c = J.random_element().subalgebra_idempotent()
                 sage: c^2 == c
                 True
@@ -987,7 +987,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(FiniteDimensionalAlgebra):
 
             EXAMPLES::
 
-                sage: J = JordanSpinAlgebra(3)
+                sage: J = JordanSpinEJA(3)
                 sage: e0,e1,e2 = J.gens()
                 sage: x = e0 + e1 + e2
                 sage: x.trace()
@@ -1085,7 +1085,7 @@ def random_eja():
     """
     n = ZZ.random_element(1,5)
     constructor = choice([eja_rn,
-                          JordanSpinAlgebra,
+                          JordanSpinEJA,
                           RealSymmetricSimpleEJA,
                           ComplexHermitianSimpleEJA,
                           QuaternionHermitianSimpleEJA])
@@ -1634,7 +1634,7 @@ def OctonionHermitianSimpleEJA(n):
     n = 3
     pass
 
-class JordanSpinAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
+class JordanSpinEJA(FiniteDimensionalEuclideanJordanAlgebra):
     """
     The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
     with the usual inner product and jordan product ``x*y =
@@ -1645,7 +1645,7 @@ class JordanSpinAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
 
     This multiplication table can be verified by hand::
 
-        sage: J = JordanSpinAlgebra(4)
+        sage: J = JordanSpinEJA(4)
         sage: e0,e1,e2,e3 = J.gens()
         sage: e0*e0
         e0
@@ -1678,7 +1678,7 @@ class JordanSpinAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
             Qi[0,0] = Qi[0,0] * ~field(2)
             Qs.append(Qi)
 
-        fdeja = super(JordanSpinAlgebra, cls)
+        fdeja = super(JordanSpinEJA, cls)
         return fdeja.__classcall_private__(cls, field, Qs)
 
     def rank(self):