from cvxopt import matrix, printing, solvers
from cones import CartesianProduct, IceCream, NonnegativeOrthant
from errors import GameUnsolvableException
-from matrices import append_col, append_row, identity, inner_product, norm
+from matrices import (append_col, append_row, eigenvalues_re, identity,
+ inner_product, norm)
import options
printing.options['dformat'] = options.FLOAT_FORMAT
game = SymmetricLinearGame(L, K, e1, e2)
self.assertTrue(game.solution().game_value() >= -options.ABS_TOL)
+
+ def test_lyapunov_orthant(self):
+ """
+ Test that a Lyapunov game on the nonnegative orthant works.
+ """
+ (_, K, e1, e2) = _random_orthant_params()
+
+ # Ignore that L, we need a diagonal (Lyapunov-like) one.
+ L = _random_diagonal_matrix(K.dimension())
+ game = SymmetricLinearGame(L, K, e1, e2)
+ soln = game.solution()
+
+ # We only check for positive/negative stability if the game
+ # value is not basically zero. If the value is that close to
+ # zero, we just won't check any assertions.
+ L = matrix(L).trans()
+ if soln.game_value() > options.ABS_TOL:
+ # L should be positive stable
+ ps = all([eig > -options.ABS_TOL for eig in eigenvalues_re(L)])
+ self.assertTrue(ps)
+ elif soln.game_value() < -options.ABS_TOL:
+ # L should be negative stable
+ ns = all([eig < options.ABS_TOL for eig in eigenvalues_re(L)])
+ self.assertTrue(ns)