+---------------------+
| 1.00000000000000*e0 |
+---------------------+
+ sage: A.gens()
+ (+---------------------+
+ | 1.00000000000000*e0 |
+ +---------------------+,
+ +---------------------+
+ | 1.00000000000000*e1 |
+ +---------------------+,
+ +---------------------+
+ | 1.00000000000000*e2 |
+ +---------------------+,
+ +---------------------+
+ | 1.00000000000000*e3 |
+ +---------------------+,
+ +---------------------+
+ | 1.00000000000000*e4 |
+ +---------------------+,
+ +---------------------+
+ | 1.00000000000000*e5 |
+ +---------------------+,
+ +---------------------+
+ | 1.00000000000000*e6 |
+ +---------------------+,
+ +---------------------+
+ | 1.00000000000000*e7 |
+ +---------------------+)
::
+-----+
| 1.0 |
+-----+
+ sage: A.gens()
+ (+-----+
+ | 1.0 |
+ +-----+,
+ +---+
+ | i |
+ +---+,
+ +---+
+ | j |
+ +---+,
+ +---+
+ | k |
+ +---+)
::
+------------------+
| 1.00000000000000 |
+------------------+
+ sage: A.gens()
+ (+------------------+
+ | 1.00000000000000 |
+ +------------------+,
+ +--------------------+
+ | 1.00000000000000*I |
+ +--------------------+)
::
I = range(n)
J = range(n)
self._entry_algebra = entry_algebra
- entry_basis = entry_algebra.gens()
+
+ # Needs to make the (overridden) method call when, for example,
+ # the entry algebra is the complex numbers and its gens() method
+ # lies to us.
+ entry_basis = self.entry_algebra_gens()
basis_indices = [(i,j,e) for i in range(n)
for j in range(n)
- for e in entry_algebra.gens()]
+ for e in entry_basis]
super().__init__(scalars,
basis_indices,
"""
return self._entry_algebra
+ def entry_algebra_gens(self):
+ r"""
+ Return a tuple of the generators of (that is, a basis for) the
+ entries of this matrix algebra.
+
+ This can be overridden in subclasses to work around the
+ inconsistency in the ``gens()`` methods of the various
+ entry algebras.
+ """
+ return self.entry_algebra().gens()
+
def nrows(self):
return self._nrows
ncols = nrows